We explore the dynamical behavior of two f(T, B) gravity models with a scalar field: 1. f(T,B)=T-γlog[ψB0B]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(T,B)=T-\gamma log\bigg [\frac{\psi B_{0}}{B}\bigg ]$$\end{document} and 2. f(T,B)=ηT+ζBn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(T,B)=\eta T+\frac{\zeta }{B^{n}}$$\end{document}, using the potential V(ϕ)=V0(α+e-βϕ)-δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V(\phi )=V_{0}(\alpha +e^{-\beta \phi })^{-\delta }$$\end{document} and an interaction term Q¯=ϵHϕ˙2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{Q} = \epsilon H \dot{\phi }^2$$\end{document}. A phase space analysis reveals four fixed points in Model 3.1 (three stable, one saddle) and five in Model 3.2 (four stable), indicating transitions from matter to dark energy dominance. With interaction, Model 3.2 exhibits seven fixed points, including five stable, one unstable (stiff matter era) and one saddle point. Evolution of the deceleration parameter q and the total EoS parameter ωtot\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega _{tot}$$\end{document} confirms sustained cosmic acceleration, with present values q0=-1.005\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q_{0} = -1.005$$\end{document} and ω0=-0.556\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega _{0} = -0.556$$\end{document} (Model 3.1) and q0=-1.245\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q_{0} = -1.245$$\end{document} and ω0=-1.0404\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega _{0}=-1.0404$$\end{document} (Model 3.2). Comparisons of our observationally constrained parameters with Λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda $$\end{document}CDM show strong consistency, supporting the viability of these models in describing the late-time accelerated expansion of the Universe.