Cosmological Dynamics and Stability Analysis in f(T, B) Gravity with Interacting Scalar Field

被引:0
作者
Amit Samaddar [1 ]
S. Surendra Singh [1 ]
机构
[1] National Institute of Technology Manipur,Department of Mathematics
关键词
(;  ; ) gravity; Dynamical system; Scalar field; Interacting model; Observational data;
D O I
10.1007/s10701-025-00856-z
中图分类号
学科分类号
摘要
We explore the dynamical behavior of two f(T, B) gravity models with a scalar field: 1. f(T,B)=T-γlog[ψB0B]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,B)=T-\gamma log\bigg [\frac{\psi B_{0}}{B}\bigg ]$$\end{document} and 2. f(T,B)=ηT+ζBn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T,B)=\eta T+\frac{\zeta }{B^{n}}$$\end{document}, using the potential V(ϕ)=V0(α+e-βϕ)-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\phi )=V_{0}(\alpha +e^{-\beta \phi })^{-\delta }$$\end{document} and an interaction term Q¯=ϵHϕ˙2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{Q} = \epsilon H \dot{\phi }^2$$\end{document}. A phase space analysis reveals four fixed points in Model 3.1 (three stable, one saddle) and five in Model 3.2 (four stable), indicating transitions from matter to dark energy dominance. With interaction, Model 3.2 exhibits seven fixed points, including five stable, one unstable (stiff matter era) and one saddle point. Evolution of the deceleration parameter q and the total EoS parameter ωtot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{tot}$$\end{document} confirms sustained cosmic acceleration, with present values q0=-1.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{0} = -1.005$$\end{document} and ω0=-0.556\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{0} = -0.556$$\end{document} (Model 3.1) and q0=-1.245\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{0} = -1.245$$\end{document} and ω0=-1.0404\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{0}=-1.0404$$\end{document} (Model 3.2). Comparisons of our observationally constrained parameters with Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM show strong consistency, supporting the viability of these models in describing the late-time accelerated expansion of the Universe.
引用
收藏
相关论文
empty
未找到相关数据