Deep ensembled voting framework for human activity recognition and validation on video sequences

被引:0
作者
Gupta, Neha [1 ,2 ]
Gupta, Suneet K. [3 ,4 ]
Jain, Vanita [5 ]
Singh, Narpinder [6 ]
Suri, Jasjit S. [7 ,8 ,9 ]
机构
[1] Bennett Univ, CSE Dept, Greater Noida, UP, India
[2] Bharati Vidyapeeths Coll Engn, Paschim Vihar, New Delhi, India
[3] Chandigarh Univ, Mohali, Punjab, India
[4] Univ Econ & Higher Sci, Warsaw, Poland
[5] Univ Delhi, Dept Elect Sci, New Delhi, India
[6] Graph Era Deemed Be Univ, Dept Food Sci & Technol, Dehra Dun 248002, Uttarakhand, India
[7] Idaho State Univ, Dept ECE, Pocatello, ID 83209 USA
[8] Symbiosis Int, Symbiosis Inst Technol, Nagpur Campus, Pune, India
[9] AtheroPointTM, Stroke Diagnost & Monitoring Div, Roseville, CA 95661 USA
关键词
Ensemble voting; Convolutional neural network; Human activity recognition; Deep learning; Long short-term memory; Conv-rec; NEURAL-NETWORK; ULTRASOUND; CLASSIFICATION; ACCURATE; SPACE; CNN;
D O I
10.1007/s12530-025-09695-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human activity recognition (HAR) is concerned with identifying human activities gathered using devices like video cameras. The video datasets are challenging in terms of quality: varying backgrounds, camera viewpoints, and huge volume. Deep learning (DL) paradigms are more suitable for such datasets than traditional machine learning techniques. But sometimes DL HAR models suffer from the misclassification problem when tested in real-time environment or on unseen data. To overcome such issues the DL-based ensembled models have proven beneficial and provide high performance. In the proposed work, a deep ensembled voting algorithm (EnsVoting) framework is introduced where the prediction is based on the output of Conv-Rec base models. In Conv-Rec model, a deep convolutional neural network (CNN) is used to extract deep features from videos that are passed to the bi-directional recurrent neural network (RNN) layer later. Then the base model's prediction is used by the proposed EnsVoting model which provides more efficient results. To validate the trained models' performance, two validation sets are made (i) seen video set: from the UCF-101 dataset; (ii) unseen video set: from the Kinetics-700 dataset. The proposed work is well researched, comprehensive, and offers novelties (i) EnsVoting algorithm based HAR framework (ii) implemented fast trained HAR model using ResNetRS-152 with 91.25% accuracy, (iii) scientific validation including seen video set with accuracy 96.25% and unseen video set with accuracy nearly 73% and, (iv) evaluated the overall performance in terms of accuracy, ROC/AUC and performed the statistical test for evaluating the p-value.
引用
收藏
页数:23
相关论文
共 118 条
[1]   Human Action Recognition Based on Transfer Learning Approach [J].
Abdulazeem, Yousry ;
Balaha, Hossam Magdy ;
Bahgat, Waleed M. ;
Badawy, Mahmoud .
IEEE ACCESS, 2021, 9 :82058-82069
[2]   A Skeleton-Free Fall Detection System From Depth Images Using Random Decision Forest [J].
Abobakr, Ahmed ;
Hossny, Mohammed ;
Nahavandi, Saeid .
IEEE SYSTEMS JOURNAL, 2018, 12 (03) :2994-3005
[3]   Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification [J].
Acharya, U. R. ;
Mookiah, M. R. K. ;
Sree, S. Vinitha ;
Yanti, R. ;
Martis, R. J. ;
Saba, L. ;
Molinari, F. ;
Guerriero, S. ;
Suri, J. S. .
ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03) :237-245
[4]   An Accurate and Generalized Approach to Plaque Characterization in 346 Carotid Ultrasound Scans [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Saba, Luca ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (04) :1045-1053
[5]   Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0 [J].
Agarwal, Mohit ;
Agarwal, Sushant ;
Saba, Luca ;
Chabert, Gian Luca ;
Gupta, Suneet ;
Carriero, Alessandro ;
Pasche, Alessio ;
Danna, Pietro ;
Mehmedovic, Armin ;
Faa, Gavino ;
Shrivastava, Saurabh ;
Jain, Kanishka ;
Jain, Harsh ;
Jujaray, Tanay ;
Singh, Inder M. ;
Turk, Monika ;
Chadha, Paramjit S. ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Mavrogeni, Sophie ;
Laird, John R. ;
Sobel, David W. ;
Miner, Martin ;
Balestrieri, Antonella ;
Sfikakis, Petros P. ;
Tsoulfas, George ;
Misra, Durga Prasanna ;
Agarwal, Vikas ;
Kitas, George D. ;
Teji, Jagjit S. ;
Al-Maini, Mustafa ;
Dhanjil, Surinder K. ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Rathore, Vijay ;
Fatemi, Mostafa ;
Alizad, Azra ;
Krishnan, Pudukode R. ;
Yadav, Rajanikant R. ;
Nagy, Frence ;
Kincses, Zsigmond Tamas ;
Ruzsa, Zoltan ;
Naidu, Subbaram ;
Viskovic, Klaudija ;
Kalra, Manudeep K. ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
[6]   Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application [J].
Agarwal, Mohit ;
Saba, Luca ;
Gupta, Suneet K. ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Mavrogeni, Sophie ;
Laird, John R. ;
Pareek, Gyan ;
Miner, Martin ;
Sfikakis, Petros P. ;
Protogerou, Athanasios ;
Sharma, Aditya M. ;
Viswanathan, Vijay ;
Kitas, George D. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (03) :511-533
[7]   A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments [J].
Al-Nawashi, Malek ;
Al-Hazaimeh, Obaida M. ;
Saraee, Mohamad .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 :S565-S572
[8]   PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology [J].
Araki, Tadashi ;
Ikeda, Nobutaka ;
Shukla, Devarshi ;
Jain, Pankaj K. ;
Londhe, Narendra D. ;
Shrivastava, Vimal K. ;
Banchhor, Sumit K. ;
Saba, Luca ;
Nicolaides, Andrew ;
Shafique, Shoaib ;
Laird, John R. ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 :137-158
[9]   3D-CNN-Based Fused Feature Maps with LSTM Applied to Action Recognition [J].
Arif, Sheeraz ;
Wang, Jing ;
Ul Hassan, Tehseen ;
Fei, Zesong .
FUTURE INTERNET, 2019, 11 (02)
[10]   Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural Networks [J].
Arifoglu, Damla ;
Bouchachia, Abdelhamid .
14TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2017) / 12TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2017) / AFFILIATED WORKSHOPS, 2017, 110 :86-93