Encryption and Decryption Using RSA Algorithm and Moore-Penrose Inverse

被引:0
|
作者
Gogoi, Sarbani [1 ]
Paul, Somnath [1 ]
机构
[1] Tezpur Univ, Napaam 784028, Assam, India
来源
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NETWORK SECURITY AND BLOCKCHAIN TECHNOLOGY, ICNSBT 2024 | 2025年 / 1158卷
关键词
Cryptography; Encryption; Decryption; RSA algorithm; Moore-Penrose Inverse;
D O I
10.1007/978-981-97-8051-8_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cryptography incorporates application and scientific examination of methodologies aimed at facilitating secure communication in the face of potentially threatening behavior. In a broader sense, cryptography refers to the development and examination of protocols with the goal of safeguarding private communications from unauthorized access by third parties. Modern cryptography is situated within a diverse range of academic disciplines, encompassing mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and other related topics. In this paper, we use the RSA algorithm along with the Moore-Penrose inverse of a matrix to establish an encryption method for the secure delivery of confidential messages.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [1] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Cui, Chong
    Wang, Hongxing
    Wei, Yimin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4163 - 4186
  • [2] Perturbations of Moore-Penrose inverse and dual Moore-Penrose generalized inverse
    Chong Cui
    Hongxing Wang
    Yimin Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4163 - 4186
  • [3] Generalization of the Moore-Penrose inverse
    Stojanovic, Katarina S.
    Mosic, Dijana
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [4] Extending the Moore-Penrose Inverse
    Dincic, Nebojsa C.
    FILOMAT, 2016, 30 (02) : 419 - 428
  • [5] Software Implementation of a Module for Encryption and Decryption Using the RSA Algorithm
    Borodzhieva, Adriana Naydenova
    2016 XXV INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRONICS (ET), 2016,
  • [6] On the Leverrier-Faddeev algorithm for computing the Moore-Penrose inverse
    Stanimirović P.S.
    Tasić M.B.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 135 - 141
  • [7] Moore-Penrose inverse in rings with involution
    Koliha, J. J.
    Djordjevic, Dragan
    Cvetkovic, Dragana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 371 - 381
  • [8] GENERALIZED COMMUTATORS AND THE MOORE-PENROSE INVERSE
    Pressman, Irwin S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 598 - 612
  • [9] The Moore-Penrose inverse of a companion matrix
    Patricio, Pedro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) : 870 - 877
  • [10] SPECTRAL PERMANENCE FOR THE MOORE-PENROSE INVERSE
    Djordjevic, Dragan S.
    Zivkovic-Zlatanovic, Snezana C.
    Harte, Robin E.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3237 - 3245