Multiscale investigation of collagen structure in human skin and gel matrices using polarization resolved second harmonic generation microscopy

被引:0
作者
Zhou, Mengyao [1 ]
Gomes, Madalena Pinto [2 ,3 ,4 ]
Elgersma, Anouk [3 ]
Korkmaz, H. Ibrahim [2 ,5 ,6 ]
Boekema, Bouke K. H. L. [2 ,3 ]
Groot, Marie Louise [1 ]
机构
[1] Vrije Univ Amsterdam, Fac Sci, Dept Phys, Laserlab, De Boelelaan 1105, NL-1081HV Amsterdam, Netherlands
[2] Amsterdam UMC, Amsterdam Movement Sci AMS Inst, Dept Plast Reconstruct & Hand Surg, Locat VUmc, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
[3] Alliance Dutch Burn Care, Burn Res Lab, NL-1941 AJ Beverwijk, Netherlands
[4] Amsterdam UMC, Locat AMC, Dept Pathol, Amsterdam, Netherlands
[5] Amsterdam Univ Med Ctr UMC, Amsterdam Infect & Immun AII Inst, Dept Mol Cell Biol & Immunol, Locat VUmc, Amsterdam, Netherlands
[6] Red Cross Hosp, Burn Ctr, Dept Plast Reconstruct & Hand Surg, Beverwijk, Netherlands
基金
欧盟地平线“2020”;
关键词
Collagen gel; Collagen type I and type III; Polarization second harmonic generation; Scar skin; EXTRACELLULAR-MATRIX; OVARIAN-CANCER; SHG; ULTRASTRUCTURE; MORPHOMETRY; SUPERIOR; TISSUE;
D O I
10.1038/s41598-025-02536-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Collagen is critical to the structure and function of skin tissues, with the collagen I/III ratios influencing fibrillogenesis, fiber organization, and skin mechanics. Abnormal collagen organization, such as in fibrosis or scar tissue, compromises both skin functionality and aesthetics. In this study, we employed label-free polarization resolved second harmonic generation (PSHG) microscopy to investigate collagen structure in artificial collagen matrices with various Col I/III ratios at the fibril scale (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document}1 to 3 mu m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\,\upmu \hbox {m}$$\end{document}) and in ex vivo human healthy and scarred skin at the fiber scale (similar to 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 10$$\end{document} to 20 mu m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20\,\upmu \hbox {m}$$\end{document}). Complementary third harmonic generation (THG) microscopy provided additional structural information. Our results indicate that an increasing Col I/III ratio is associated with longer fibril length, higher PSHG intensity, and a reduced effective alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-helix pitch angle of fibrils. In pure Col I, the effective alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-helix pitch angle is determined to be 47.72 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$47.72<^>{\circ }$$\end{document}. These observations indicate alterations in fibril assembly. Furthermore, although the alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-helix pitch angle of fibers in both healthy and scarred skin was approximately 46.7 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$46. 7<^>{\circ }$$\end{document}, healthy skin exhibited 24%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$24\%$$\end{document} greater variability in fiber orientation, suggesting a more randomized organization compared to scar tissue. THG imaging further revealed a higher cellular density in scar tissue, consistent with the inflammatory activity associated with wound healing. Immunohistochemical (IHC) staining using dermatansulphate and Col III-specific antibodies confirmed that the Col I/III ratio is higher in healthy skin (2.2) than in scarred skin (1.6). These findings underscore the potential of PSHG microscopy for label-free, quantitative assessment of collagen structure across multiple scales, with THG offering complementary cellular insights. This integrated approach represents a promising strategy for real-time, in vivo monitoring and automated quantification of collagen organization in clinical applications, including dermatology, burn treatment, and fibrosis monitoring.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging [J].
Ait-Belkacem, D. ;
Gasecka, A. ;
Munhoz, F. ;
Brustlein, S. ;
Brasselet, S. .
OPTICS EXPRESS, 2010, 18 (14) :14859-14870
[2]   Structural changes in mixed Col I/Col V collagen gels probed by SHG microscopy: implications for probing stromal alterations in human breast cancer [J].
Ajeti, Visar ;
Nadiarnykh, Oleg ;
Ponik, Suzanne M. ;
Keely, Patricia J. ;
Eliceiri, Kevin W. ;
Campagnola, Paul J. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (08) :2307-2316
[3]   Fast image analysis in polarization SHG microscopy. [J].
Amat-Roldan, Ivan ;
Psilodimitrakopoulos, Sotiris ;
Loza-Alvarez, Pablo ;
Artigas, David .
OPTICS EXPRESS, 2010, 18 (16) :17209-17219
[4]  
Asadipour B, 2024, BIOPHYS J, V123, p463A
[5]   Second harmonic generation imaging via nonlinear endomicroscopy [J].
Bao, Hongchun ;
Boussioutas, Alex ;
Jeremy, Reynolds ;
Russell, Sarah ;
Gu, Min .
OPTICS EXPRESS, 2010, 18 (02) :1255-1260
[6]   Supercoiled protein motifs:: The collagen triple-helix and the α-helical coiled coil [J].
Beck, K ;
Brodsky, B .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 122 (1-2) :17-29
[7]   ECM remodeling in hypertensive heart disease [J].
Berk, Bradford C. ;
Fujiwara, Keigi ;
Lehoux, Stephanie .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (03) :568-575
[8]   Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma [J].
Conklin, Matthew W. ;
Eickhoff, Jens C. ;
Riching, Kristin M. ;
Pehlke, Carolyn A. ;
Eliceiri, Kevin W. ;
Provenzano, Paolo P. ;
Friedl, Andreas ;
Keely, Patricia J. .
AMERICAN JOURNAL OF PATHOLOGY, 2011, 178 (03) :1221-1232
[9]   Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy [J].
Débarre, D ;
Supatto, W ;
Pena, AM ;
Fabre, A ;
Tordjmann, T ;
Combettes, L ;
Schanne-Klein, MC ;
Beaurepaire, E .
NATURE METHODS, 2006, 3 (01) :47-53
[10]   Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy [J].
Golaraei, Ahmad ;
Kontenis, Lukas ;
Cisek, Richard ;
Tokarz, Danielle ;
Done, Susan J. ;
Wilson, Brian C. ;
Barzda, Virginijus .
BIOMEDICAL OPTICS EXPRESS, 2016, 7 (10) :4054-4068