Cryogenic Hyperdimensional In-Memory Computing Using Ferroelectric TCAM

被引:0
|
作者
Singh Parihar, Shivendra [1 ,2 ]
Kumar, Shubham [1 ,2 ]
Chatterjee, Swetaki [1 ,2 ]
Pahwa, Girish [3 ]
Singh Chauhan, Yogesh [2 ]
Amrouch, Hussam [4 ]
机构
[1] Univ Stuttgart, Semicond Test & Reliabil STAR, D-70174 Stuttgart, Germany
[2] Dept Elect Engn, IIT Kanpur, Kanpur 208016, India
[3] Natl Yang Ming Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
[4] Tech Univ Munich, Munich Inst Robot & Machine Intelligence, Chair AI Processor Design, TUM Sch Computat Informat & Technol, D-80333 Munich, Germany
来源
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS | 2025年 / 11卷
关键词
Cryogenics; Vectors; Arrays; Transistors; Iron; CMOS technology; Temperature distribution; FinFETs; Semiconductor device modeling; Nonvolatile memory; 5-nm fin field-effect transistor (FinFET); compact modeling; cryogenic complementary metal oxide semiconductor (CMOS); ferroelectric fin field-effect transistor (FeFinFET); hyperdimensional computing (HDC); in-memory computing (IMC); CONTENT-ADDRESSABLE MEMORY; HIGH-SPEED; ELECTRONICS; READOUT; CMOS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cryogenic operations of electronics present a significant step forward to achieve huge demand of in-memory computing (IMC) for high-performance computing, quantum computing, and military applications. Ferroelectric (FE) is a promising candidate to develop the complementary metal oxide semiconductor (CMOS)-compatible nonvolatile memories. Hence, in this work, we investigate the effectiveness of IMC using emerging FE technology at the 5-nm technology node. To achieve that, we begin by characterizing commercial 5-nm fin field-effect transistors (FinFETs) from room temperature (300 K) down to cryogenic temperature (10 K). Then, we carefully calibrate the first industry-standard cryogenic-aware compact model [Berkeley Short-channel IGFET Model-Common Multi-Gate (BSIM-CMG)] to accurately reproduce the measurements. Afterward, we use the Preisach-model-based approach to incorporate the impact of FE within the BSIM-CMG model framework using the measurements from FE capacitor to realize ferroelectric fin field-effect transistors (Fe-FinFETs) operating from 300 down to 10 K. Then, as proof of concept, we focus on $1\times 8$ ternary content addressable memory (TCAM) array that is used to perform language classification and voice recognition using brain-inspired hyperdimensional IMC. Our comprehensive analysis spans from investigating the delay, power, and energy efficiency of TCAM-based IMC all the way up to calculating error probabilities in which we compare the figure of merits obtained from the emerging Fe-FinFET against classical FinFET-based IMC. We reveal that cryogenic temperatures lead to the worst performance in Fe-FinFET-based TCAM. Hence, we have also proposed solutions to improve the cryogenic performance of Fe-FinFET-based TCAM.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
  • [1] On the Reliability of In-Memory Computing: Impact of Temperature on Ferroelectric TCAM
    Thomann, Simon
    Li, Chao
    Zhuo, Cheng
    Prakash, Om
    Yin, Xunzhao
    Hu, Xiaobo Sharon
    Amrouch, Hussam
    2021 IEEE 39TH VLSI TEST SYMPOSIUM (VTS), 2021,
  • [2] Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing
    Kazemi, Arman
    Mueller, Franz
    Sharifi, Mohammad Mehdi
    Errahmouni, Hamza
    Gerlach, Gerald
    Kaempfe, Thomas
    Imani, Mohsen
    Hu, Xiaobo Sharon
    Niemier, Michael
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Ferroelectric MirrorBit-Integrated Field-Programmable Memory Array for the TCAM, Storage, and In-Memory Computing Applications
    Meihar, Paritosh
    Srinu, Rowtu
    Lashkare, Sandip
    Singh, Ajay Kumar
    Mulaosmanovic, Halid
    Deshpande, Veeresh
    Duenkel, Stefan
    Beyer, Sven
    Ganguly, Udayan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (05) : 2957 - 2962
  • [4] Memristor-Based Approximate Query Architecture for In-Memory Hyperdimensional Computing
    Yu, Tianyang
    Wu, Bi
    Chen, Ke
    Zhang, Gong
    Liu, Weiqiang
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (11) : 2605 - 2618
  • [5] AM4: MRAM Crossbar Based CAM/TCAM/ACAM/AP for In-Memory Computing
    Garzon, Esteban
    Lanuzza, Marco
    Teman, Adam
    Yavits, Leonid
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (01) : 408 - 421
  • [6] Cryogenic In-Memory Computing for Quantum Processors Using Commercial 5-nm FinFETs
    Parihar, Shivendra Singh
    Thomann, Simon
    Pahwa, Girish
    Chauhan, Yogesh Singh
    Amrouch, Hussam
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2023, 4 : 258 - 270
  • [7] Tri-HD: Energy-Efficient On-Chip Learning With In-Memory Hyperdimensional Computing
    Xu, Weihong
    Gupta, Saransh
    Morris, Justin
    Shen, Xincheng
    Imani, Mohsen
    Aksanli, Baris
    Rosing, Tajana
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (02) : 525 - 539
  • [8] Van der Waals Ferroelectric Semiconductor Field Effect Transistor for In-Memory Computing
    Liao, Junyi
    Wen, Wen
    Wu, Juanxia
    Zhou, Yaming
    Hussain, Sabir
    Hu, Haowen
    Li, Jiawei
    Liaqat, Adeel
    Zhu, Hongwei
    Jiao, Liying
    Zheng, Qiang
    Xie, Liming
    ACS NANO, 2023, 17 (06) : 6095 - 6102
  • [9] In-memory computing to break the memory wall*
    Huang, Xiaohe
    Liu, Chunsen
    Jiang, Yu-Gang
    Zhou, Peng
    CHINESE PHYSICS B, 2020, 29 (07)
  • [10] In-Memory Computing for Machine Learning and Deep Learning
    Lepri, N.
    Glukhov, A.
    Cattaneo, L.
    Farronato, M.
    Mannocci, P.
    Ielmini, D.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 587 - 601