The hydrostatic Lagrangian approach to the compressible primitive equations

被引:0
作者
Hieber, Matthias [1 ]
Iida, Yoshiki [2 ]
Roy, Arnab [3 ,4 ]
Zoechling, Tarek [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Waseda Univ, Grad Sch Fundamental Sci & Engn, Dept Pure & Appl Math, Tokyo 1698555, Japan
[3] Basque Ctr Appl Math BCAM, Alameda Mazarredo 14, Bilbao 48009, Spain
[4] Basque Fdn Sci, IKERBASQUE, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
关键词
BOUNDARY-VALUE-PROBLEMS; WEAK SOLUTIONS; ATMOSPHERE; EXISTENCE; DYNAMICS; OCEAN;
D O I
10.1007/s00208-025-03117-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article develops the hydrostatic Lagrangian approach to the compressible primitive equations. A fundamental aspect in the analysis is the investigation of the compressible hydrostatic Lam & eacute; and Stokes operators. Local strong well-posedness for large data and global strong well-posedness for small data are established under various assumptions on the pressure law, both in the presence and absence of gravity.
引用
收藏
页码:2277 / 2308
页数:32
相关论文
共 33 条
[1]  
Amann H., 2019, FUNCTION SPACES MONO, V106
[2]  
Amann H, 1995, Monographs in Mathematics, V89
[3]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[4]   Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ANNALS OF MATHEMATICS, 2007, 166 (01) :245-267
[5]  
Danchin R., 2018, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
[6]   Compressible Navier-Stokes equations with ripped density [J].
Danchin, Raphael ;
Mucha, Piotr BogusLaw .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (11) :3437-3492
[7]   A LAGRANGIAN APPROACH FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Danchin, Raphael .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (02) :753-791
[8]   New thoughts on old results of R.T.!Seeley [J].
Denk, R ;
Dore, G ;
Hieber, M ;
Prüss, J ;
Venni, A .
MATHEMATISCHE ANNALEN, 2004, 328 (04) :545-583
[9]  
Denk R., 2003, MEM AM MATH SOC, V788
[10]   Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data [J].
Denk, Robert ;
Hieber, Matthias ;
Pruess, Jan .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :193-224