A Systematic Integration of Artificial Intelligence Models in Appendicitis Management: A Comprehensive Review

被引:0
作者
Males, Ivan [1 ]
Kumric, Marko [2 ,3 ]
Males, Andrea Huic [4 ]
Cvitkovic, Ivan [5 ]
Santic, Roko [2 ]
Pogorelic, Zenon [6 ,7 ]
Bozic, Josko [2 ,3 ]
机构
[1] Univ Hosp Split, Dept Abdominal Surg, Spinciceva 1, Split 21000, Croatia
[2] Univ Split, Sch Med, Dept Pathophysiol, Soltanska 2A, Split 21000, Croatia
[3] Univ Split, Sch Med, Lab Cardiometab Res, Soltanska 2A, Split 21000, Croatia
[4] Univ Hosp Split, Dept Pediat, Spinciceva 1, Split 21000, Croatia
[5] Univ Hosp Split, Dept Anesthesiol & Intens Care, Spinciceva 1, Split 21000, Croatia
[6] Univ Split, Sch Med, Dept Surg, Soltanska 2A, Split 21000, Croatia
[7] Univ Hosp Split, Dept Pediat Surg, Spinciceva 1, Split 21000, Croatia
关键词
appendicitis; artificial intelligence; machine learning; clinical decision support; DIAGNOSIS;
D O I
10.3390/diagnostics15070866
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) and machine learning (ML) are transforming the management of acute appendicitis by enhancing diagnostic accuracy, optimizing treatment strategies, and improving patient outcomes. This study reviews AI applications across all stages of appendicitis care, from triage to postoperative management, using sources from PubMed/MEDLINE, IEEE Xplore, arXiv, Web of Science, and Scopus, covering publications up to 14 February 2025. AI models have demonstrated potential in triage, enabling rapid differentiation of appendicitis from other causes of abdominal pain. In diagnostics, ML algorithms incorporating clinical, laboratory, imaging, and demographic data have improved accuracy and reduced uncertainty. These tools also predict disease severity, aiding decisions between conservative management and surgery. Radiomics further enhances diagnostic precision by analyzing imaging data. Intraoperatively, AI applications are emerging to support real-time decision-making, assess procedural steps, and improve surgical training. Postoperatively, ML models predict complications such as abscess formation and sepsis, facilitating early interventions and personalized recovery plans. This is the first comprehensive review to examine AI's role across the entire appendicitis treatment process, including triage, diagnosis, severity prediction, intraoperative assistance, and postoperative prognosis. Despite its potential, challenges remain regarding data quality, model interpretability, ethical considerations, and clinical integration. Future efforts should focus on developing end-to-end AI-assisted workflows that enhance diagnosis, treatment, and patient outcomes while ensuring equitable access and clinician oversight.
引用
收藏
页数:17
相关论文
共 59 条
[1]   Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence [J].
Akbulut, Sami ;
Yagin, Fatma Hilal ;
Cicek, Ipek Balikci ;
Koc, Cemalettin ;
Colak, Cemil ;
Yilmaz, Sezai .
DIAGNOSTICS, 2023, 13 (06)
[2]   Integration of Physical Examination, Old and New Biomarkers, and Ultrasonography by Using Neural Networks for Pediatric Appendicitis [J].
Akgul, Fatma ;
Er, Anil ;
Ulusoy, Emel ;
Caglar, Aykut ;
Citlenbik, Hale ;
Keskinoglu, Pembe ;
Sisman, Ali R. ;
Karakus, Osman Z. ;
Ozer, Erdener ;
Duman, Murat ;
Yilmaz, Durgul .
PEDIATRIC EMERGENCY CARE, 2021, 37 (12) :E1075-E1081
[3]   The Use of Machine Learning Approaches for the Diagnosis of Acute Appendicitis [J].
Akmese, Omer F. ;
Dogan, Gul ;
Kor, Hakan ;
Erbay, Hasan ;
Demir, Emre .
EMERGENCY MEDICINE INTERNATIONAL, 2020, 2020
[4]  
Alramadhan Morouge M, 2022, Ann Surg Open, V3, pe168, DOI 10.1097/AS9.0000000000000168
[5]   A novel and simple machine learning algorithm for preoperative diagnosis of acute appendicitis in children [J].
Aydin, Emrah ;
Turkmen, Inan Utku ;
Namli, Gozde ;
ozturk, Cigdem ;
Esen, Ayse B. ;
Eray, Y. Nur ;
Eroglu, Egemen ;
Akova, Fatih .
PEDIATRIC SURGERY INTERNATIONAL, 2020, 36 (06) :735-742
[6]   Current Applications of Artificial Intelligence in Bariatric Surgery [J].
Bellini, Valentina ;
Valente, Marina ;
Turetti, Melania ;
Del Rio, Paolo ;
Saturno, Francesco ;
Maffezzoni, Massimo ;
Bignami, Elena .
OBESITY SURGERY, 2022, 32 (08) :2717-2733
[7]   Application of machine learning to the prediction of postoperative sepsis after appendectomy [J].
Bunn, Corinne ;
Kulshrestha, Sujay ;
Boyda, Jason ;
Balasubramanian, Neelam ;
Birch, Steven ;
Karabayir, Ibrahim ;
Baker, Marshall ;
Luchette, Fred ;
Modave, Francois ;
Akbilgic, Oguz .
SURGERY, 2021, 169 (03) :671-677
[8]   Implementation of artificial intelligence-based computer vision model in laparoscopic appendectomy: validation, reliability, and clinical correlation [J].
Dayan, Danit ;
Dvir, Nadav ;
Agbariya, Haneen ;
Nizri, Eran .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2024, 38 (06) :3156-3166
[9]   Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines [J].
Di Saverio, Salomone ;
Podda, Mauro ;
De Simone, Belinda ;
Ceresoli, Marco ;
Augustin, Goran ;
Gori, Alice ;
Boermeester, Marja ;
Sartelli, Massimo ;
Coccolini, Federico ;
Tarasconi, Antonio ;
de' Angelis, Nicola ;
Weber, Dieter G. ;
Tolonen, Matti ;
Birindelli, Arianna ;
Biffl, Walter ;
Moore, Ernest E. ;
Kelly, Michael ;
Soreide, Kjetil ;
Kashuk, Jeffry ;
Ten Broek, Richard ;
Gomes, Carlos Augusto ;
Sugrue, Michael ;
Davies, Richard Justin ;
Damaskos, Dimitrios ;
Leppaniemi, Ari ;
Kirkpatrick, Andrew ;
Peitzman, Andrew B. ;
Fraga, Gustavo P. ;
Maier, Ronald V. ;
Coimbra, Raul ;
Chiarugi, Massimo ;
Sganga, Gabriele ;
Pisanu, Adolfo ;
de' Angelis, Gian Luigi ;
Tan, Edward ;
Van Goor, Harry ;
Pata, Francesco ;
Di Carlo, Isidoro ;
Chiara, Osvaldo ;
Litvin, Andrey ;
Campanile, Fabio C. ;
Sakakushev, Boris ;
Tomadze, Gia ;
Demetrashvili, Zaza ;
Latifi, Rifat ;
Abu-Zidan, Fakri ;
Romeo, Oreste ;
Segovia-Lohse, Helmut ;
Baiocchi, Gianluca ;
Costa, David .
WORLD JOURNAL OF EMERGENCY SURGERY, 2020, 15 (01)
[10]   Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions [J].
Dixit, Shriniket ;
Kumar, Anant ;
Srinivasan, Kathiravan ;
Vincent, P. M. Durai Raj ;
Krishnan, Nadesh Ramu .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 11