Hybrid Beluga whale and jellyfish search optimizer for optimizing proton exchange membrane fuel cell parameter estimation

被引:0
作者
Aljaidi, Mohammad [1 ]
Jangir, Pradeep [2 ,3 ,4 ]
Arpita [5 ]
Agrawal, Sunilkumar P. [6 ]
Pandya, Sundaram B. [7 ]
Parmar, Anil [7 ]
Gulothungan, G. [8 ]
Alkoradees, Ali Fayez [9 ]
Jangid, Reena [10 ,11 ,12 ,13 ]
机构
[1] Zarqa Univ, Fac Informat Technol, Dept Comp Sci, Zarqa 13110, Jordan
[2] Chandigarh Univ Gharuan, Univ Ctr Res & Dev, Mohali 140413, India
[3] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan 320315, Taiwan
[4] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[5] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biosci, Chennai 602105, India
[6] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[7] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[8] SRM Inst Sci & Technol, Dept Elect & Commun Engn, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
[9] Qassim Univ, Appl Coll, Unit Sci Res, Buraydah, Saudi Arabia
[10] Graph Era Hill Univ, Dept CSE, Dehra Dun 248002, India
[11] Graph Era Deemed Univ, Dept CSE, Dehra Dun 248002, Uttaranchal, India
[12] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[13] JJ Coll Engn & Technol, Dept Elect & Elect Engn, Tiruchirappalli, Tamil Nadu, India
关键词
Proton exchange membrane fuel cells (PEMFCs); Beluga Whale Optimizer (BWO); Jellyfish Search Optimizer ([!text type='JS']JS[!/text]); Hybrid strategy; Parameter estimation; MODEL; ALGORITHM; VALIDATION;
D O I
10.1007/s11581-025-06284-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
PEMFCs used in clean energy systems rely on accurate modeling to achieve optimal performance in addition to design optimization. The estimations of model parameters remain difficult due to PEMFC model complexity and nonlinearity alongside operating condition variations. A new Hybrid Beluga Whale Optimizer based on the Jellyfish Search Optimizer (HBWO-JS) serves as the proposed solution to handle these difficulties. The HBWO-JS combines vertical crossover and Gaussian variation elements from JS optimizer to improve both search effectiveness alongside solution precision and convergence acceleration. The research evaluated the proposed algorithm using six PEMFC models including Nedstack 600 W PS6, Horizon H- 12, Ballard Mark V, SR- 12 W, BCS 500 W, and STD 250 W Stack. The research compared results against Jellyfish Search (JS) Optimizer and Beluga Whale Optimization (BWO) as well as Artificial Hummingbird Algorithm (AHA) and Artificial Rabbits Optimization (ARO) and Dandelion Optimizer (DO) and White Shark Optimizer (WSO) and Grey Wolf Optimization (GWO). The HBWO-JS generated the most accurate curve fits through its consistent achievement of minimum sum of squared errors (SSE) for all tested methods. The research shows that HBWO-JS represents a powerful optimization framework for PEMFC parameter estimation which successfully manages exploration and exploitation to address existing optimization limitations. The results from this study will support future PEMFC model development for energy systems so they can be used in large-scale fuel cell systems and other applications like solid oxide fuel cells (SOFCs).
引用
收藏
页码:5547 / 5579
页数:33
相关论文
共 75 条
[1]   Developments on metaheuristic-based optimization for numerical and engineering optimization problems: Analysis, design, validation, and applications [J].
Abdel-Basset, Mohamed ;
Mohamed, Reda ;
Jasser, Muhammed Basheer ;
Hezam, Ibrahim M. ;
Sallam, Karam M. ;
Mohamed, Ali Wagdy .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 78 :175-212
[2]   An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells [J].
Abdel-Basset, Mohamed ;
Mohamed, Reda ;
Chang, Victor .
ENERGIES, 2021, 14 (21)
[3]  
Ahmed Z., 2023, ENERGY STORAGE MANAG, V18, P234, DOI [10.4567/esm.2023.2234, DOI 10.4567/ESM.2023.2234]
[4]  
Al-Gbury O., 2020, 4 INT S MULT STUD IN
[5]   Chaotic harmony search algorithms [J].
Alatas, Bilal .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (09) :2687-2699
[6]   Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer [J].
Ali, M. ;
El-Hameed, M. A. ;
Farahat, M. A. .
RENEWABLE ENERGY, 2017, 111 :455-462
[7]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[8]   Analytical modelling and experimental validation of proton exchange membrane electrolyser for hydrogen production [J].
Aouali, F. Z. ;
Becherif, M. ;
Ramadan, H. S. ;
Emziane, M. ;
Khellaf, A. ;
Mohammedi, K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (02) :1366-1374
[9]  
Basheer A, 2024, J ADV ENERGY SYST, V32, P134, DOI [10.5678/jaes.2024.3148, DOI 10.5678/JAES.2024.3148]
[10]   White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems [J].
Braik, Malik ;
Hammouri, Abdelaziz ;
Atwan, Jaffar ;
Al-Betar, Mohammed Azmi A. ;
Awadallah, Mohammed A. .
KNOWLEDGE-BASED SYSTEMS, 2022, 243