Surrogate Model of Electron Cyclotron Heating and Current Drive in a Compact Advanced Tokamak

被引:0
作者
Irvin, Andrew M. [1 ,2 ]
Hassan, Ehab [1 ]
de Pascuale, Sebastian [1 ]
Cianciosa, Mark [1 ]
Barnett, Rhea L. [1 ]
Casali, Livia [2 ]
机构
[1] Oak Ridge Natl Lab, Fus Energy Div, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[2] Univ Tennessee Knoxville, Nucl Engn Dept, 863 Neyland Dr, Knoxville, TN 37916 USA
关键词
Tokamaks; electron cyclotron; heating and current drive; NEOCLASSICAL TEARING MODES; RECONSTRUCTION;
D O I
10.1080/15361055.2025.2476829
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The complex and iterative nature of plasma scenario optimization in fusion devices necessitates the use of reduced models in early stages of the design process to filter through a large parameter space in an efficient manner. Ray-tracing codes, such as TORAY, offer considerable advantages in run time for electron cyclotron (EC) heating and current drive (H/CD) cases over full-wave codes while maintaining a high degree of fidelity. We deploy the Fusion Reactor Design and Assessment (FREDA)-TokDesigner workflow to enable training of a surrogate model for EC H/CD radial profiles based on the TORAY ray-tracing code, coupled to the Integrated Plasma Simulator (IPS)-FASTRAN framework. The surrogate model is trained to predict key H/CD profile characteristics for EC cases based on a subset of plasma and EC launcher parameters for a Compact Advanced Tokamak (CAT) design point. The CAT was selected as a baseline to assess the performance of the surrogate model trained in the fusion pilot plant regime. The surrogate model is able to accomplish this an order of magnitude faster than TORAY coupled to IPS-FASTRAN while still maintaining a high level of accuracy. The surrogate model demonstrates invertibility, being able to solve the inverse problem to generate an accurate parameter space for a set of desired H/CD profile characteristics.
引用
收藏
页数:15
相关论文
共 33 条
[1]   ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE PROGRAM FOR KSTAR BASED ON THE 170-GHz GYROTRON [J].
Bae, Y. S. ;
Joung, M. ;
Yang, H. L. ;
Namkung, W. ;
Cho, M. H. ;
Park, H. ;
Prater, R. ;
Ellis, R. A. ;
Hosea, J. .
FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (04) :640-646
[2]   Resolving ECRH deposition broadening due to edge turbulence in DIII-D [J].
Brookman, M. W. ;
Austin, M. E. ;
Petty, C. C. ;
La Haye, R. J. ;
Barada, K. ;
Rhodes, T. L. ;
Yan, Z. ;
Koehn, A. ;
Thomas, M. B. ;
Leddy, J. ;
Vann, R. G. L. .
PHYSICS OF PLASMAS, 2021, 28 (04)
[3]   The advanced tokamak path to a compact net electric fusion pilot plant [J].
Buttery, R. J. ;
Park, J. M. ;
McClenaghan, J. T. ;
Weisberg, D. ;
Canik, J. ;
Ferron, J. ;
Garofalo, A. ;
Holcomb, C. T. ;
Leuer, J. ;
Snyder, P. B. .
NUCLEAR FUSION, 2021, 61 (04)
[4]   Millimeter-wave beam scattering by edge-plasma density fluctuations in TCV [J].
Chellai, O. ;
Alberti, S. ;
Baquero-Ruiz, M. ;
Furno, I ;
Goodman, T. ;
Labit, B. ;
Maj, O. ;
Ricci, P. ;
Riva, F. ;
Guidi, L. ;
Poli, E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)
[5]   Millimeter-Wave Beam Scattering by Field-Aligned Blobs in Simple Magnetized Toroidal Plasmas [J].
Chellai, O. ;
Alberti, S. ;
Baquero-Ruiz, M. ;
Furno, I. ;
Goodman, T. ;
Manke, F. ;
Plyushchev, G. ;
Guidi, L. ;
Koehn, A. ;
Maj, O. ;
Poli, E. ;
Hizanidis, K. ;
Figini, L. ;
Ricci, D. .
PHYSICAL REVIEW LETTERS, 2018, 120 (10)
[6]   Uncertainty Analysis in 3D Equilibrium Reconstruction [J].
Cianciosa, Mark R. ;
Hanson, James D. ;
Maurer, David A. .
FUSION SCIENCE AND TECHNOLOGY, 2018, 74 (1-2) :1-12
[7]  
COLLINS C., 2023, P 29 IAEA FUS EN C L
[8]   THEORY OF CURRENT DRIVE IN PLASMAS [J].
FISCH, NJ .
REVIEWS OF MODERN PHYSICS, 1987, 59 (01) :175-234
[9]   A NEW LOOK AT DENSITY LIMITS IN TOKAMAKS [J].
GREENWALD, M ;
TERRY, JL ;
WOLFE, SM ;
EJIMA, S ;
BELL, MG ;
KAYE, SM ;
NEILSON, GH .
NUCLEAR FUSION, 1988, 28 (12) :2199-2207
[10]   Electron cyclotron heating and current drive in ITER [J].
Harvey, RW ;
Nevins, WM ;
Smith, GR ;
Lloyd, B ;
OBrien, MR ;
Warrick, CD .
NUCLEAR FUSION, 1997, 37 (01) :69-81