New results on subdirect sums of Nekrasov matrices

被引:0
作者
Zeng, Wenlong [1 ]
Wang, Qing-Wen [2 ,3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Dept Math, Shanghai, Peoples R China
[3] Shanghai Univ, Collaborat Innovat Ctr Marine Artificial Intellige, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Subdirect sum; Nekrasov matrix; strictly diagonally dominant matrix; SUB-DIRECT SUMS;
D O I
10.1080/03081087.2025.2499274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates sufficient conditions for the k-subdirect sum $ B\oplus _k A $ B circle plus kA to be a Nekrasov matrix, where A is a Nekrasov matrix and B is a strictly diagonally dominant matrix. Specifically, for k = 1, the 1-subdirect sum $ A\oplus _1 B $ A circle plus 1B is shown to be a Nekrasov matrix, whereas $ B\oplus _1 A $ B circle plus 1A is not necessarily a Nekrasov matrix. To address this discrepancy, we propose two sufficient conditions under which $ B\oplus _1 A $ B circle plus 1A can be ensured to be a Nekrasov matrix. This paper not only addresses partly the question posed by Li et al. in their paper titled 'On subdirect sums of Nekrasov matrices' (Linear and Multilinear Algebra, 72(6): 1044-1055, 2024), but also enhances the theoretical understanding of the closure property of subdirect sums for Nekrasov matrices.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Some results about inverse-positive matrices [J].
Abad, Manuel F. ;
Gasso, Maria T. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) :130-139
[2]  
Bru R, 2005, ELECTRON J LINEAR AL, V13, P162
[3]   Additive Schwarz iterations for Markov chains [J].
Bru, R ;
Pedroche, F ;
Szyld, DB .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) :445-458
[4]  
Bru R, 2006, ELECTRON J LINEAR AL, V15, P201
[5]   Sub-direct sums and positivity classes of matrices [J].
Fallat, SM ;
Johnson, CR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 288 (1-3) :149-173
[6]   Weighted max norms, splittings, and overlapping additive Schwarz iterations [J].
Frommer, A ;
Szyld, DB .
NUMERISCHE MATHEMATIK, 1999, 83 (02) :259-278
[7]   Subdirect sums ofQN-matrices [J].
Gao, Lei ;
Huang, Hui ;
Li, Chaoqian .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (08) :1605-1623
[8]   Error bounds for linear complementarity problems of Nekrasov matrices [J].
Garcia-Esnaola, Marta ;
Manuel Pena, Juan .
NUMERICAL ALGORITHMS, 2014, 67 (03) :655-667
[9]  
HORN RA, 1985, MATRIX ANAL
[10]   Subdirect sums of P(P0)-matrices and totally nonnegative matrices [J].
Huang, Ting-Zhu ;
Mou, Gu-Fang ;
Tian, Gui-Xian ;
Li, Zhongshan ;
Wang, Di .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) :1730-1743