LLMs4OM: Matching Ontologies with Large Language Models

被引:1
作者
Giglou, Hamed Babaei [1 ]
D'Souza, Jennifer [1 ]
Engel, Felix [1 ]
Auer, Soeren [1 ]
机构
[1] TIB Leibniz Informat Ctr Sci & Technol, Hannover, Germany
来源
SEMANTIC WEB: ESWC 2024 SATELLITE EVENTS, PT I | 2025年 / 15344卷
基金
欧洲研究理事会;
关键词
Ontology Matching; Ontology Alignment; Large Language Models; Retrieval Augmented Generation; Zero-Shot Testing;
D O I
10.1007/978-3-031-78952-6_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ontology Matching (OM), is a critical task in knowledge integration, where aligning heterogeneous ontologies facilitates data interoperability and knowledge sharing. Traditional OM systems often rely on expert knowledge or predictive models, with limited exploration of the potential of Large Language Models (LLMs). We present the LLMs4OM framework, a novel approach to evaluate the effectiveness of LLMs in OM tasks. This framework utilizes two modules for retrieval and matching, respectively, enhanced by zero-shot prompting across three ontology representations: concept, concept-parent, and concept-children. Through comprehensive evaluations using 20 OM datasets from various domains, we demonstrate that LLMs, under the LLMs4OM framework, can match and even surpass the performance of traditional OM systems, particularly in complex matching scenarios. Our results highlight the potential of LLMs to significantly contribute to the field of OM.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 52 条
[1]   Ontology Modularization with OAPT [J].
Algergawy, Alsayed ;
Babalou, Samira ;
Klan, Friederike ;
Koenig-Ries, Birgitta .
JOURNAL ON DATA SEMANTICS, 2020, 9 (2-3) :53-83
[2]  
Almazrouei E., 2023, The falcon series of open language models
[3]  
Alsentzer E, 2019, P 2 CLIN NAT LANG PR, DOI 10.18653/v1/W19-1909
[4]  
Amir M., 2023, Truveta Mapper: a zero-shot ontology alignment framework
[5]  
Cer D, 2018, CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P169
[6]  
Chung Hyung Won, 2022, Scaling instruction-finetuned language models
[7]  
da Silva J., 2023, CEUR Workshop Proceedings,, P140
[8]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[9]   Experiences from the anatomy track in the ontology alignment evaluation initiative [J].
Dragisic, Zlatan ;
Ivanova, Valentina ;
Li, Huanyu ;
Lambrix, Patrick .
JOURNAL OF BIOMEDICAL SEMANTICS, 2017, 8
[10]  
Efeoglu S., 2022, CEUR WORKSHOP P, P174