Using Large Language Models to Generate Process Knowledge from Enterprise Content

被引:0
作者
Franzoi, Sandro [1 ,2 ]
Delwaulle, Maxime [1 ]
Dyong, Julian [1 ]
Schaffner, Jan [1 ]
Burger, Mara [1 ,2 ]
vom Brocke, Jan [1 ,2 ]
机构
[1] Univ Munster, D-48149 Munster, Germany
[2] ERCIS European Res Ctr Informat Syst, D-48149 Munster, Germany
来源
BUSINESS PROCESS MANAGEMENT WORKSHOPS, BPM 2024 | 2025年 / 534卷
关键词
Large Language Models; Process Knowledge; Generative Artificial Intelligence; Business Process Management; DESIGN SCIENCE;
D O I
10.1007/978-3-031-78666-2_19
中图分类号
F [经济];
学科分类号
02 ;
摘要
Large language models (LLMs) have disrupted knowledge work in many application areas. Accordingly, the Business Process Management (BPM) community has started to explore how LLMs can be leveraged, resulting in a variety of promising research directions across the BPM lifecycle. Despite rapid adoption in practice and strong research interest, however, little is known about the actual design of BPM systems that leverage LLMs in organizational contexts. In this paper, we report on design science-based research in collaboration with a large multinational company to design a BPM system that leverages LLMs for process knowledge extraction from diverse enterprise content. Based on the development of our prototype, we observe that LLMs provide the means to organize and generate process knowledge independent of specific forms of representation. We present a conceptual framework that describes the role of LLMs in generating process knowledge from diverse input formats and, in turn, making it available in diverse output formats via prompting, resulting in representation-agnostic process knowledge. We also highlight implications of our study for BPM research and practice.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 35 条
[1]  
Beheshti Amin, 2023, 2023 IEEE International Conference on Web Services (ICWS), P731, DOI 10.1109/ICWS60048.2023.00099
[2]  
Bellan P., ENTERPRISE DESIGN OP
[3]   Seven Paradoxes of Business Process Management in a Hyper-Connected World [J].
Beverungen, Daniel ;
Buijs, Joos C. A. M. ;
Becker, Joerg ;
Di Ciccio, Claudio ;
van der Aalst, Wil M. P. ;
Bartelheimer, Christian ;
vom Brocke, Jan ;
Comuzzi, Marco ;
Kraume, Karsten ;
Leopold, Henrik ;
Matzner, Martin ;
Mendling, Jan ;
Ogonek, Nadine ;
Post, Till ;
Resinas, Manuel ;
Revoredo, Kate ;
del-Rio-Ortega, Adela ;
La Rosa, Marcello ;
Santoro, Flavia Maria ;
Solti, Andreas ;
Song, Minseok ;
Stein, Armin ;
Stierle, Matthias ;
Wolf, Verena .
BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2021, 63 (02) :145-156
[4]  
Bors L., 2020, Oracle DigitalAssistant: AGuide to EnterpriseGrade Chatbots, V1st
[5]   AI-augmented Business Process Management Systems: A Research Manifesto [J].
Dumas, Marlon ;
Fournier, Fabiana ;
Limonad, Lior ;
Marrella, Andrea ;
Montali, Marco ;
Rehse, Jana-Rebecca ;
Accorsi, Rafael ;
Calvanese, Diego ;
De Giacomo, Giuseppe ;
Fahland, Dirk ;
Gal, Avigdor ;
La Rosa, Marcello ;
Voelzer, Hagen ;
Weber, Ingo .
ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2023, 14 (01)
[6]   Generative AI [J].
Feuerriegel, Stefan ;
Hartmann, Jochen ;
Janiesch, Christian ;
Zschech, Patrick .
BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2024, 66 (01) :111-126
[7]   Exploring cognitive style and task-specific preferences for process representations [J].
Figl, Kathrin ;
Recker, Jan .
REQUIREMENTS ENGINEERING, 2016, 21 (01) :63-85
[8]   Conceptual Modeling and Large Language Models: Impressions From First Experiments With ChatGPT [J].
Fill, Hans-Georg ;
Fettke, Peter ;
Koepke, Julius .
ENTERPRISE MODELLING AND INFORMATION SYSTEMS ARCHITECTURES-AN INTERNATIONAL JOURNAL, 2023, 18 :1-15
[9]  
FlowiseAI, About us
[10]  
Friedrich Fabian, 2011, Advanced Information Systems Engineering. Proceedings 23rd International Conference, CAiSE 2011, P482, DOI 10.1007/978-3-642-21640-4_36