Smooth helically symmetric transonic flows with nonzero vorticity in a concentric cylinder

被引:0
作者
Ke, Yi [1 ]
Weng, Shangkun [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
INCOMPRESSIBLE FLOWS; ANGULAR VELOCITY; EXISTENCE; EQUATIONS;
D O I
10.1063/5.0192205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns the structural stability of smooth cylindrical symmetric transonic flows in a concentric cylinder under helically symmetric perturbation of suitable boundary conditions. The deformation-curl decomposition developed in [S. Weng and Z. Xin, Sci. Sin. Math. 49, 307 (2019)] is utilized to effectively decouple the elliptic-hyperbolic mixed structure in the steady compressible Euler equation. A key parameter in the helical symmetry is the step (denoted by sigma), which denotes the magnitude of the translation along the symmetry axis after rotating one full turn. It is shown that the step determines the type of the first order partial differential system satisfied by the radial and vertical velocity. There exists a critical number sigma* depending only on the background transonic flows, such that if 0 < sigma < sigma*, one can prove the existence and uniqueness of smooth helically symmetric transonic flows with nonzero vorticity.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] STABILITY OF TWO-DIMENSIONAL VISCOUS INCOMPRESSIBLE FLOWS UNDER THREE-DIMENSIONAL PERTURBATIONS AND INVISCID SYMMETRY BREAKING
    Bardos, C.
    Lopes Filho, M. C.
    Niu, Dongjuan
    Nussenzveig Lopes, H. J.
    Titi, E. S.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1871 - 1885
  • [2] GLOBAL EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THREE-DIMENSIONAL EULER EQUATIONS WITH HELICAL SYMMETRY IN THE ABSENCE OF VORTICITY STRETCHING
    Ettinger, Boris
    Titi, Edriss S.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (01) : 269 - 296
  • [3] Gilbarg D., 2015, Grundlehren Math. Wiss., V224
  • [4] ON THE EXISTENCE OF HELICAL INVARIANT SOLUTIONS TO STEADY NAVIER-STOKES EQUATIONS
    Korobkov, M. I. K. H. A. I. L.
    Lyu, W. E. N. Q., I
    Weng, S. H. A. N. G. K. U. N.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3974 - 3996
  • [5] Kuzmin A. G., 2002, Boundary-Value Problems for Transonic Flow
  • [7] Planar Limits of Three-Dimensional Incompressible Flows with Helical Symmetry
    Lopes Filho, Milton C.
    Mazzucato, Anna L.
    Niu, Dongjuan
    Nussenzveig Lopes, Helena J.
    Titi, Edriss S.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2014, 26 (04) : 843 - 869
  • [8] INVARIANT HELICAL SUBSPACES FOR THE NAVIER-STOKES EQUATIONS
    MAHALOV, A
    TITI, ES
    LEIBOVICH, S
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) : 193 - 222
  • [9] Regular subsonic-sonic flows in general nozzles
    Wang, Chunpeng
    Xin, Zhouping
    [J]. ADVANCES IN MATHEMATICS, 2021, 380
  • [10] Smooth Transonic Flows of Meyer Type in De Laval Nozzles
    Wang, Chunpeng
    Xin, Zhouping
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (03) : 1597 - 1647