Mullite-alumina nacre-like ceramic fabricated by ceramic vat photopolymerization

被引:0
作者
Wu, Xiangquan [1 ,2 ]
Teng, Jiachen [1 ]
Wang, Shengyu [1 ]
Zhang, Zhongming [1 ,2 ]
Sui, Shang [1 ,2 ]
Xu, Chunjie [1 ,2 ]
机构
[1] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[2] Xian Shechtman Nobel Prize New Mat Inst, Xian 710048, Peoples R China
关键词
Nacre-like structure; Shear stress in the local flow; Ceramic vat photopolymerization; Mullite-alumina; Toughness; STRENGTH; TOUGH;
D O I
10.1016/j.jeurceramsoc.2025.117374
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Current investigations have studied using alumina platelets combining with hot press sintering or infiltration process to fabricate toughened nacre-like composite ceramics, while there is still a lack of research on the fabrication of nacre-like ceramics using vat photopolymerization and pressureless sintering. We utilized the gradient shear stress in the local slurry flow in the vat photopolymerization printing to horizontally orient the alumina platelets in the slurry, and then prepared mullite-alumina nacre-like ceramics by combining the template grain growth and the in-situ reaction of SiO2-Al2O3. When the content of alumina platelet accounted for 20 vol%, the bending strengths of load parallel to the printing direction and perpendicular to the printing direction were 344 f 20 MPa and 352 f 24 MPa, respectively. The fracture toughness were 3.57 f 0.38 MPa.m1/2 and 3.37 f 0.24 MPa.m1/2, respectively. The prepared nacre-like structure had the effect of crack deflection and crack twisting in the fracture surface.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Strong and tough nacre-like aluminas: Process-structure-performance relationships and position within the nacre-inspired composite landscape [J].
Bouville, Florian .
JOURNAL OF MATERIALS RESEARCH, 2020, 35 (08) :1076-1094
[2]  
Bouville F, 2014, NAT MATER, V13, P508, DOI [10.1038/NMAT3915, 10.1038/nmat3915]
[3]   Digital light processing additive manufacturing of in situ mullite-zirconia composites [J].
de Camargo, Italo Leite ;
Erbereli, Rogerio ;
Lovo, Joao Fiore Parreira ;
Fortulan, Raphael ;
Fortulan, Carlos Alberto .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (13) :6025-6032
[4]  
Griffith ML, 1996, J AM CERAM SOC, V79, P2601, DOI 10.1111/j.1151-2916.1996.tb09022.x
[5]   Fractography of zirconia-specimens made using additive manufacturing (LCM) technology [J].
Harrer, Walter ;
Schwentenwein, Martin ;
Lube, Tanja ;
Danzer, Robert .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (14) :4331-4338
[6]  
Lee R.-T., 2017, P 7 INT C MECH MAT D
[7]   The influence of sintering procedure and porosity on the properties of 3D printed alumina ceramic cores [J].
Li, He ;
Liu, Yongsheng ;
Colombo, Paolo ;
Li, Wenbo ;
Liu, Yansong ;
Hu, Kehui ;
Lu, Zhigang .
CERAMICS INTERNATIONAL, 2021, 47 (19) :27668-27676
[8]   Silica strengthened alumina ceramic cores prepared by 3D printing [J].
Li, He ;
Liu, Yongsheng ;
Liu, Yansong ;
Zeng, Qingfeng ;
Liang, Jingjing .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (04) :2938-2947
[9]   Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects [J].
Li, Jinguo ;
An, Xiaolong ;
Liang, Jingjing ;
Zhou, Yizhou ;
Sun, Xiaofeng .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 117 :79-98
[10]   Enhanced 3D printed Al2O3 core via in-situ mullite [J].
Li, Qiaolei ;
Meng, Xiantian ;
Zhang, Xuechun ;
Liang, Jingjing ;
Zhang, Chaowei ;
Li, Jinguo ;
Zhou, Yizhou ;
Sun, Xiaofeng .
ADDITIVE MANUFACTURING, 2022, 55