Artificial intelligence and its potential integration with the clinical practice of diagnostic imaging medical physicists: a review

被引:0
作者
Lam, Ngo Fung Daniel [1 ]
Cai, Jing [2 ]
Ng, Kwan Hoong [3 ,4 ]
机构
[1] Queen Mary Hosp, Dept Radiol, Pok Fu Lam, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hung Hom, Hong Kong, Peoples R China
[3] Univ Malaya, Fac Med, Dept Biomed Imaging, Kuala Lumpur, Malaysia
[4] UCSI Univ, Fac Med & Hlth Sci, Springhill, Negri Sembilan, Malaysia
关键词
Artificial intelligence; Diagnostic imaging physics; Clinical medical physics; Medical imaging; Clinical application; NEURAL-NETWORK; QUALITY-CONTROL; MACHINE; RADIOLOGY; RECONSTRUCTION; PREDICTION; ALGORITHM; CRYSTALS; MODELS; FETUS;
D O I
10.1007/s13246-025-01535-z
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current clinical practice in imaging medical physics is concerned with quality assurance, image processing and analysis, radiation dosimetry, risk assessment and radiation protection, and in-house training and research. Physicist workloads are projected to increase as medical imaging technologies become more sophisticated. Artificial intelligence (AI) is a rising technology with potential to assist medical physicists in their work. Exploration of AI integration into imaging medical physicist workloads is limited. In this review paper, we provide an overview of AI techniques, outline their potential usage in imaging medical physics, and discuss the limitations and challenges to clinical adoption of AI technologies.
引用
收藏
页码:529 / 544
页数:16
相关论文
共 179 条
[1]  
ACR Committee on MR Safety, 2024, ACR MANUAL MR SAFETY
[2]  
ACR committee on quality assurance in magnetic resonance imaging, 2015, 2015 MAGNETIC RESONA
[3]  
ACR Subcommittee on quality assurance in mammography of the committee on mammography accreditation, 2020, DIGITAL MAMMOGRAPHY
[4]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[5]   Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT [J].
Akagi, Motonori ;
Nakamura, Yuko ;
Higaki, Toru ;
Narita, Keigo ;
Honda, Yukiko ;
Zhou, Jian ;
Yu, Zhou ;
Akino, Naruomi ;
Awai, Kazuo .
EUROPEAN RADIOLOGY, 2019, 29 (11) :6163-6171
[6]   Preparation of stabilized submicron fenofibrate crystals on niacin as a hydrophilic hydrotropic carrier [J].
Alshaikh, Rasha A. ;
Essa, Ebtessam A. ;
El Maghraby, Gamal M. .
PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2020, 25 (02) :168-177
[7]   Radiation dose to the fetus for pregnant patients undergoing multidetector CT imaging: Monte Carlo Simulations estimating fetal dose for a range of gestational age and patient size1 [J].
Angel, Erin ;
Wellnitz, Clinton V. ;
Goodsitt, Mitchell M. ;
Yaghmai, Nazanin ;
DeMarco, John J. ;
Cagnon, Christopher H. ;
Sayre, James W. ;
Cody, Dianna D. ;
Stevens, Donna M. ;
Primak, Andrew N. ;
McCollough, Cynthia H. ;
McNitt-Gray, Michael F. .
RADIOLOGY, 2008, 249 (01) :220-227
[8]   TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods (vol 385, e078378, 2024) [J].
Collins .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[9]  
[Anonymous], 2005, Structural shielding design and evaluation for megavoltage x-and gamma-ray radiotherapy facilities
[10]  
[Anonymous], 2023, Gpt-4 Technical Report, DOI DOI 10.48550/ARXIV.2303.08774