General Hardy-type operators on local generalized Morrey spaces
被引:2
作者:
Yee, Tat-leung
论文数: 0引用数: 0
h-index: 0
机构:
Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Hong Kong, Peoples R China
Yee, Tat-leung
[1
]
Ho, Kwok-pun
论文数: 0引用数: 0
h-index: 0
机构:
Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Hong Kong, Peoples R China
Ho, Kwok-pun
[1
]
机构:
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Hong Kong, Peoples R China
General Hardy-type operator;
Hardy inequality;
Riemann-Liouville integrals;
local generalized Morrey spaces;
ball Banach function spaces;
rearrangement-invariant;
variable exponents;
WEIGHTED NORM INEQUALITIES;
SUFFICIENT CONDITIONS;
INTEGRAL-OPERATORS;
RIEMANN-LIOUVILLE;
MAXIMAL OPERATOR;
BOUNDEDNESS;
D O I:
10.33205/cma.1531860
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
. This paper extends the mapping properties of the general Hardy-type operators to local generalized Morrey spaces built on ball quasi-Banach function spaces. As applications of the main result, we establish the two weight norm inequalities of the Hardy operators to the local generalized Morrey spaces, the mapping properties of the Riemann-Liouville integrals on local generalized Morrey spaces built on rearrangement-invariant quasi-Banach function spaces, the Hardy inequalities on the local generalized Morrey spaces with variable exponents.