Leveraging initial conditions memory for modelling Rayleigh-Taylor turbulence

被引:1
作者
Thevenin, Sebastien [1 ,2 ]
Grea, Benoit-Joseph [1 ,2 ]
Kluth, Gilles [1 ,2 ]
Nadiga, Balasubramanya T. [3 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Paris Saclay, CEA, LMCE, F-91680 Chatel, France
[3] Alamos Natl Lab, Los Alamos, NM USA
关键词
transition to turbulence; machine learning; turbulent mixing; INERTIAL CONFINEMENT FUSION; SENSITIVITY-ANALYSIS; INSTABILITY; PERTURBATIONS; SIMULATIONS; TRANSITION; INTERFACE; PHYSICS;
D O I
10.1017/jfm.2025.209
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, we tackle the challenge of inferring the initial conditions of a Rayleigh-Taylor mixing zone for modelling purposes by analysing zero-dimensional (0-D) turbulent quantities measured at an unspecified time. This approach assesses the extent to which 0-D observations retain the memory of the flow, evaluating their effectiveness in determining initial conditions and, consequently, in predicting the flow's evolution. To this end, we generated a comprehensive dataset of direct numerical simulations, focusing on miscible fluids with low density contrasts. The initial interface deformations in these simulations are characterised by an annular spectrum parametrised by four non-dimensional numbers. To study the sensitivity of 0-D turbulent quantities to initial perturbation distributions, we developed a surrogate model using a physics-informed neural network (PINN). This model enables computation of the Sobol indices for the turbulent quantities, disentangling the effects of the initial parameters on the growth of the mixing layer. Within a Bayesian framework, we employ a Markov chain Monte Carlo (MCMC) method to determine the posterior distributions of initial conditions and time, given various state variables. This analysis sheds light on inertial and diffusive trajectories, as well as the progressive loss of initial conditions memory during the transition to turbulence. Furthermore, it identifies which turbulent quantities serve as better predictors of Rayleigh-Taylor mixing zone dynamics by more effectively retaining the memory of the flow. By inferring initial conditions and forward propagating the maximum a posteriori (MAP) estimate, we propose a strategy for modelling the Rayleigh-Taylor transition to turbulence.
引用
收藏
页数:35
相关论文
共 98 条
[1]   Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment [J].
Abu-Shawareb, H. ;
Acree, R. ;
Adams, P. ;
Adams, J. ;
Addis, B. ;
Aden, R. ;
Adrian, P. ;
Afeyan, B. B. ;
Aggleton, M. ;
Aghaian, L. ;
Aguirre, A. ;
Aikens, D. ;
Akre, J. ;
Albert, F. ;
Albrecht, M. ;
Albright, B. J. ;
Albritton, J. ;
Alcala, J. ;
Alday, C., Jr. ;
Alessi, D. A. ;
Alexander, N. ;
Alfonso, J. ;
Alfonso, N. ;
Alger, E. ;
Ali, S. J. ;
Ali, Z. A. ;
Allen, A. ;
Alley, W. E. ;
Amala, P. ;
Amendt, P. A. ;
Amick, P. ;
Ammula, S. ;
Amorin, C. ;
Ampleford, D. J. ;
Anderson, R. W. ;
Anklam, T. ;
Antipa, N. ;
Appelbe, B. ;
Aracne-Ruddle, C. ;
Araya, E. ;
Archuleta, T. N. ;
Arend, M. ;
Arnold, P. ;
Arnold, T. ;
Arsenlis, A. ;
Asay, J. ;
Atherton, L. J. ;
Atkinson, D. ;
Atkinson, R. ;
Auerbach, M. .
PHYSICAL REVIEW LETTERS, 2024, 132 (06)
[2]   Small Atwood number Rayleigh-Taylor experiments [J].
Andrews, Malcolm J. ;
Dalziel, Stuart B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1916) :1663-1679
[3]   A SIMPLE EXPERIMENT TO INVESTIGATE 2-DIMENSIONAL MIXING BY RAYLEIGH-TAYLOR INSTABILITY [J].
ANDREWS, MJ ;
SPALDING, DB .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (06) :922-927
[4]  
[Anonymous], 1990, Matematicheskoe Modelirovanie, DOI DOI 10.18287/0134-2452-2015-39-4-459-461
[5]   Effects of variable deceleration periods on Rayleigh-Taylor instability with acceleration reversals [J].
Aslangil, Denis ;
Lawrie, Andrew G. W. ;
Banerjee, Arindam .
PHYSICAL REVIEW E, 2022, 105 (06)
[6]   Development and validation of a turbulent-mix model for variable-density and compressible flows [J].
Banerjee, Arindam ;
Gore, Robert A. ;
Andrews, Malcolm J. .
PHYSICAL REVIEW E, 2010, 82 (04)
[7]   Revisiting the late-time growth of single-mode Rayleigh-Taylor instability and the role of vorticity [J].
Bian, Xin ;
Aluie, Hussein ;
Zhao, Dongxiao ;
Zhang, Huasen ;
Livescu, Daniel .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
[8]   Effects of polymer additives on Rayleigh-Taylor turbulence [J].
Boffetta, G. ;
Mazzino, A. ;
Musacchio, S. .
PHYSICAL REVIEW E, 2011, 83 (05)
[9]   Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one [J].
Boffetta, G. ;
Mazzino, A. ;
Musacchio, S. ;
Vozella, L. .
PHYSICS OF FLUIDS, 2010, 22 (03) :1-8
[10]   Incompressible Rayleigh-Taylor Turbulence [J].
Boffetta, Guido ;
Mazzino, Andrea .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 49, 2017, 49 :119-143