The higher integrability of weak solutions of critical Choquard parabolic equations

被引:0
作者
Boudjeriou, Tahir [1 ]
机构
[1] Univ Boumerdes, Inst Elect & Elect Engn, Dept Basic Teaching, Boumerdes 35000, Algeria
关键词
Choquard equations; higher integrability; boundedness of solutions; asymptotic behavior; BLOW-UP;
D O I
10.1007/s11784-025-01206-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we improve upon some results obtained by Zhang et al. (J Dyn Diff Equ https://doi.org/10.1007/s10884-023-10278-y, 2023). Specifically, we improve the local higher integrability of global weak solutions. Additionally, we establish both local and global boundedness of global weak solutions. Furthermore, we improve the results concerning asymptotic behavior.
引用
收藏
页数:19
相关论文
共 15 条
[1]  
Alonso Peral I., 2021, Elliptic and Parabolic Equations Involving the HardyLeray Potential, V38, DOI [10.1515/9783110606270, DOI 10.1515/9783110606270]
[2]   THE SEMICLASSICAL LIMIT OF THE TIME DEPENDENT HARTREE-FOCK EQUATION: THE WEYL SYMBOL OF THE SOLUTION [J].
Amour, Laurent ;
Khodja, Mohamed ;
Nourrigat, Jean .
ANALYSIS & PDE, 2013, 6 (07) :1649-1674
[3]  
[Anonymous], 2001, Graduate Studies in Mathematics
[4]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[5]  
Boudjeriou T, 2021, APPL MATH OPT, V84, pS695, DOI 10.1007/s00245-021-09783-7
[6]  
Henry Daniel., 2006, Geometric theory of semilinear parabolic equations, V840
[7]   Invariant sets and the blow up threshold for a nonlocal equation of parabolic type [J].
Liu, Baiyu ;
Ma, Li .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 :141-156
[8]   A guide to the Choquard equation [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) :773-813
[9]   Semi-classical states for the Choquard equation [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) :199-235
[10]  
Pekar S., 1954, UNTERSUCHUNGEN MUBER, DOI 10.1515/9783112649305