A class of permutations on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}$$\end{document} with differential uniformity at most 3A class of permutations on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}$$\end{document} with differential uniformity at most 3P. Gupta et al.

被引:0
|
作者
Prachi Gupta [1 ]
P. R. Mishra [2 ]
Atul Gaur [1 ]
机构
[1] University of Delhi,Department of Mathematics
[2] Defence Research and Development Organization,Scientific Analysis Group
[3] Metcalfe House,undefined
关键词
Differential uniformity; Finite field; Permutation; 05A05; 11T71; 94A60;
D O I
10.1007/s10623-024-01548-x
中图分类号
学科分类号
摘要
In this paper, we give a class of permutations on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p}$$\end{document} having differential uniformity at most 3, where prime p satisfies p≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1 \pmod {4}$$\end{document}. Further, we present a sufficient condition for differential uniformity exactly 3 and identify a subclass achieving this value.
引用
收藏
页码:1283 / 1293
页数:10
相关论文
共 44 条