Revolutionizing Battery Safety: Real-Time Insights with Dynamic Electrochemical Impedance Spectroscopy

被引:1
作者
Du, Xinghao [1 ]
Meng, Jinhao [2 ]
Xue, Zhichen [3 ]
Amirat, Yassine [4 ]
Gao, Fei [5 ]
Benbouzid, Mohamed [1 ]
机构
[1] Univ Brest, F-29238 Brest, France
[2] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[4] LbISEN, ISEN Yncrea Ouest, F-29200 Brest, France
[5] Univ Marie & Louis Pasteur, UTBM, CNRS, Inst FEMTO ST, F-90000 Belfort, France
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; THERMAL RUNAWAY; RELAXATION; FAILURE; PREVENTION; PREDICTION; MECHANISM; CIRCUIT; SYSTEM; MODEL;
D O I
10.1021/acsenergylett.5c00484
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In-situ diagnosis represents an urgent need for long-term battery safety and optimized performance. Dynamic electrochemical impedance spectroscopy (DEIS) enables in situ frequency response analysis during battery operations, offering critical insights into evolving electrochemical behaviors and emerging failure mechanisms. DEIS links fundamental electrochemical science and dynamic battery performance by elucidating kinetic pathways across time scales. Furthermore, it enables the precise characterization of analytical dynamics and addresses real-world complexities such as nonequilibrium processes and coupled electrochemical-thermal interactions. Moreover, DEIS provides a deeper understanding of battery aging and failure mechanisms that drive advancements in material innovation and operational optimization. This perspective focuses on the potential of DEIS in battery research, offering real-time insights into the intricate interplay of electrochemical processes and enabling safer and high-performing battery systems.
引用
收藏
页码:2292 / 2304
页数:13
相关论文
共 76 条
[51]   A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests [J].
Schoenleber, M. ;
Klotz, D. ;
Ivers-Tiffee, E. .
ELECTROCHIMICA ACTA, 2014, 131 :20-27
[52]   Lithium-ion battery cell formation: status and future directions towards a knowledge-based process design [J].
Schomburg, Felix ;
Heidrich, Bastian ;
Wennemar, Sarah ;
Drees, Robin ;
Roth, Thomas ;
Kurrat, Michael ;
Heimes, Heiner ;
Jossen, Andreas ;
Winter, Martin ;
Cheong, Jun Young ;
Roeder, Fridolin .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (08) :2686-2733
[53]   Revealing Grain-Boundary-Induced Degradation Mechanisms in Li-Rich Cathode Materials [J].
Sharifi-Asl, Soroosh ;
Yurkiv, Vitaliy ;
Gutierrez, Arturo ;
Cheng, Meng ;
Balasubramanian, Mahalingam ;
Mashayek, Farzad ;
Croy, Jason ;
Shahbazian-Yassar, Reza .
NANO LETTERS, 2020, 20 (02) :1208-1217
[54]   Online detection of lithium plating onset during constant and multistage constant current fast charging for lithium-ion batteries [J].
Shen, Yudong ;
Wang, Xueyuan ;
Jiang, Zhao ;
Luo, Bingyin ;
Chen, Daidai ;
Wei, Xuezhe ;
Dai, Haifeng .
APPLIED ENERGY, 2024, 370
[55]   Novel Fitting Algorithm for Parametrization of Equivalent Circuit Model of Li-Ion Battery From Broadband Impedance Measurements [J].
Sihvo, Jussi ;
Roinila, Tomi ;
Stroe, Daniel-Ioan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (06) :4916-4926
[56]   Lithium-sulfur battery diagnostics through distribution of relaxation times analysis [J].
Soni, Roby ;
Robinson, James B. ;
Shearing, Paul R. ;
Brett, Dan J. L. ;
Rettie, Alexander J. E. ;
Miller, Thomas S. .
ENERGY STORAGE MATERIALS, 2022, 51 :97-107
[57]   Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention [J].
Srinivasan, Rengaswamy ;
Demirev, Plamen A. ;
Carkhuff, Bliss G. .
JOURNAL OF POWER SOURCES, 2018, 405 :30-36
[58]   High-Performance Silicon Anodes Enabled by Multifunctional Ultrafine Silica Nanoparticle-Embedded Carbon Coatings for Lithium-Ion Batteries [J].
Sun, Zhefei ;
Yin, Quanzhi ;
Zhou, Shenghui ;
Chen, Haoyu ;
Wen, Sifan ;
Yang, Huiping ;
Wu, Xiaoyu ;
Pan, Jianhai ;
Han, Jiajia ;
Yang, Hui ;
Zhuang, Zilong ;
Feng, Shijie ;
Zhang, Li ;
Peng, Dong-Liang ;
Zhang, Qiaobao .
ADVANCED ENERGY MATERIALS, 2025, 15 (23)
[59]   Electrochemical Processes and Reactions In Rechargeable Battery Materials Revealed via In Situ Transmission Electron Microscopy [J].
Sun, Zhefei ;
Pan, Jianhai ;
Chen, Weiwei ;
Chen, Haoyu ;
Zhou, Shenghui ;
Wu, Xiaoyu ;
Wang, Yangsu ;
Kim, Kangwoon ;
Li, Jie ;
Liu, Haodong ;
Yuan, Yifei ;
Wang, Jiangwei ;
Su, Dong ;
Peng, Dong-Liang ;
Zhang, Qiaobao .
ADVANCED ENERGY MATERIALS, 2024, 14 (02)
[60]   A state-of-the art review on advancing battery thermal management systems for fast-charging [J].
Thakur, Amrit Kumar ;
Sathyamurthy, Ravishankar ;
Velraj, R. ;
Saidur, R. ;
Pandey, A. K. ;
Ma, Z. ;
Singh, Punit ;
Hazra, Soumya Kanti ;
Sharshir, Swellam Wafa ;
Prabakaran, Rajendran ;
Kim, Sung Chul ;
Panchal, Satyam ;
Ali, Hafiz Muhammad .
APPLIED THERMAL ENGINEERING, 2023, 226