Revolutionizing Battery Safety: Real-Time Insights with Dynamic Electrochemical Impedance Spectroscopy

被引:1
作者
Du, Xinghao [1 ]
Meng, Jinhao [2 ]
Xue, Zhichen [3 ]
Amirat, Yassine [4 ]
Gao, Fei [5 ]
Benbouzid, Mohamed [1 ]
机构
[1] Univ Brest, F-29238 Brest, France
[2] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Shaanxi, Peoples R China
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[4] LbISEN, ISEN Yncrea Ouest, F-29200 Brest, France
[5] Univ Marie & Louis Pasteur, UTBM, CNRS, Inst FEMTO ST, F-90000 Belfort, France
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; THERMAL RUNAWAY; RELAXATION; FAILURE; PREVENTION; PREDICTION; MECHANISM; CIRCUIT; SYSTEM; MODEL;
D O I
10.1021/acsenergylett.5c00484
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In-situ diagnosis represents an urgent need for long-term battery safety and optimized performance. Dynamic electrochemical impedance spectroscopy (DEIS) enables in situ frequency response analysis during battery operations, offering critical insights into evolving electrochemical behaviors and emerging failure mechanisms. DEIS links fundamental electrochemical science and dynamic battery performance by elucidating kinetic pathways across time scales. Furthermore, it enables the precise characterization of analytical dynamics and addresses real-world complexities such as nonequilibrium processes and coupled electrochemical-thermal interactions. Moreover, DEIS provides a deeper understanding of battery aging and failure mechanisms that drive advancements in material innovation and operational optimization. This perspective focuses on the potential of DEIS in battery research, offering real-time insights into the intricate interplay of electrochemical processes and enabling safer and high-performing battery systems.
引用
收藏
页码:2292 / 2304
页数:13
相关论文
共 76 条
[1]   Automatic initialization of a Complex Nonlinear Least Squares algorithm for impedance battery frequential identification [J].
Arahbi, Omar ;
Huard, Benoit ;
Gabano, Jean-Denis ;
Poinot, Thierry .
JOURNAL OF ENERGY STORAGE, 2023, 73
[2]   A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy [J].
Barai, Anup ;
Chouchelamane, Gael H. ;
Guo, Yue ;
McGordon, Andrew ;
Jennings, Paul .
JOURNAL OF POWER SOURCES, 2015, 280 :74-80
[3]   A LINEAR KRONIG-KRAMERS TRANSFORM TEST FOR IMMITTANCE DATA VALIDATION [J].
BOUKAMP, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (06) :1885-1894
[4]   Impedance-Based Battery Management System for Safety Monitoring of Lithium-Ion Batteries [J].
Carkhuff, Bliss G. ;
Demirev, Plamen A. ;
Srinivasan, Rengaswamy .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6497-6504
[5]   Enhanced SOC Estimation for LFP Batteries: A Synergistic Approach Using Coulomb Counting Reset, Machine Learning, and Relaxation [J].
Che, Yunhong ;
Xu, Le ;
Teodorescu, Remus ;
Hu, Xiaosong ;
Onori, Simona .
ACS ENERGY LETTERS, 2025, :741-749
[6]   A Lithium-Ion Battery Degradation Prediction Model With Uncertainty Quantification for Its Predictive Maintenance [J].
Chen, Chuang ;
Tao, Guanye ;
Shi, Jiantao ;
Shen, Mouquan ;
Zhu, Zheng Hong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) :3650-3659
[7]   A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity [J].
Chen, Lin ;
Lu, Zhiqiang ;
Lin, Weilong ;
Li, Junzi ;
Pan, Haihong .
MEASUREMENT, 2018, 116 :586-595
[8]   Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review [J].
Cheng, C. M. ;
Peng, Z. K. ;
Zhang, W. M. ;
Meng, G. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 87 :340-364
[9]   Internal short circuit early detection of lithium-ion batteries from impedance spectroscopy using deep learning [J].
Cui, Binghan ;
Wang, Han ;
Li, Renlong ;
Xiang, Lizhi ;
Du, Jiannan ;
Zhao, Huaian ;
Li, Sai ;
Zhao, Xinyue ;
Yin, Geping ;
Cheng, Xinqun ;
Ma, Yulin ;
Huo, Hua ;
Zuo, Pengjian ;
Du, Chunyu .
JOURNAL OF POWER SOURCES, 2023, 563
[10]  
Ding JF, 2021, J ENERGY CHEM, V59, P306, DOI [10.1016/j.jechem.2020.11.0162095-4956/, 10.1016/j.jechem.2020.11.016]