A Motion Planning Framework with Learning Based Trajectory Prediction in Self Driving

被引:0
作者
Bian, Feiyu [1 ,2 ]
Liu, Xing [1 ,2 ]
Zhang, Yizhai [1 ,2 ]
Ma, Zhiqiang [1 ,2 ]
Shen, Ganghui [1 ,2 ]
Huang, Panfeng [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Astronaut, Res Ctr Intelligent Robot, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Natl Key Lab Aerosp Flight Dynam, Xian 710072, Peoples R China
来源
ADVANCES IN GUIDANCE, NAVIGATION AND CONTROL, VOL 1 | 2025年 / 1337卷
基金
中国国家自然科学基金;
关键词
Motion planning; Gaussian process; Trajectory prediction;
D O I
10.1007/978-981-96-2200-9_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient and reliable motion planning system is critical in changing environments for autonomous driving. In this paper, we present a motion planning algorithm for dynamic scenarios through Gaussian process(GP) path planner and trajectory predictor. Firstly we plan a feasible path with GP planner. Then, the predictor generates several possible trajectories of other participants and we use a S-T graph speed planner to produce the speed profile with predicted results. Finally, simulation results demonstrate that our algorithm can improve the success rate of random driving tasks compared to the commonly used constant velocity assumption.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 15 条
  • [1] Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
  • [2] Real-Time Trajectory Planning for Autonomous Driving with Gaussian Process and Incremental Refinement
    Cheng, Jie
    Chen, Yingbing
    Zhang, Qingwen
    Gan, Lu
    Liu, Chengju
    Liu, Ming
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8999 - 9005
  • [3] Dellaert F., 2012, Tech. Rep, V2, P4
  • [4] Safe Trajectory Generation for Complex Urban Environments Using Spatio-Temporal Semantic Corridor
    Ding, Wenchao
    Zhang, Lu
    Chen, Jing
    Shen, Shaojie
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (03) : 2997 - 3004
  • [5] Dosovitskiy A, 2017, PR MACH LEARN RES, V78
  • [6] Sampling-Based Robot Motion Planning: A Review
    Elbanhawi, Mohamed
    Simic, Milan
    [J]. IEEE ACCESS, 2014, 2 : 56 - 77
  • [7] Fan HY, 2018, Arxiv, DOI [arXiv:1807.08048, DOI 10.48550/ARXIV.1807.08048]
  • [8] A Review of Motion Planning Techniques for Automated Vehicles
    Gonzalez, David
    Perez, Joshue
    Milanes, Vicente
    Nashashibi, Fawzi
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (04) : 1135 - 1145
  • [9] A Decoupled Trajectory Planning Framework Based on the Integration of Lattice Searching and Convex Optimization
    Meng, Yu
    Wu, Yangming
    Gu, Qing
    Liu, Li
    [J]. IEEE ACCESS, 2019, 7 : 130530 - 130551
  • [10] Continuous-time Gaussian process motion planning via probabilistic inference
    Mukadam, Mustafa
    Dong, Jing
    Yan, Xinyan
    Dellaert, Frank
    Boots, Byron
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (11) : 1319 - 1340