Tensorized graph-guided view recovery for incomplete multi-view clustering

被引:0
|
作者
Zheng, Li [1 ]
Yan, Guanghui [1 ]
Tang, Chunyang [1 ]
Yan, Tianfeng [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect & Informat Engn, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Robust tensorized graph learning; Incomplete multi-view clustering;
D O I
10.1007/s10489-025-06515-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering (MVC) methods have demonstrated remarkable success when all samples are available across multiple views by leveraging consistency and complementary information. However, real-world multi-view data often suffers from incompleteness, where some samples are missing in one or more views. This incompleteness makes MVC challenging, as it becomes difficult to uncover consistency and complementary relationships among the view data. As a result, Incomplete Multi-View Clustering (IMVC) has emerged to address the limitations posed by missing data. An intuitive approach to tackle this issue is view recovery-effectively leveraging consistency information from multiple views to impute missing data. However, the quality of view recovery heavily depends on the learned consistency information, making it crucial to learn high-quality consistency representations. To address this challenge, we propose a novel approach called Tensorized Graph-Guided View Recovery (TGGVR), which integrates view recovery and tensorized graph learning within a unified framework. The tensorized graph learning estimate a similarity graph for each view by exploiting consistency and complementary information through tensorized learning. In addition, high-quality neighborhood structures are exploited to obtain a more accurate consensus graph. This high-quality consensus graph then guides the more accurate recovery of missing data, establishing a cyclical procedure in which tensorized graph learning and data imputation mutually reinforce each other. Experimental results demonstrate that our proposed method outperforms several state-of-the-art approaches in tackling the challenging task of IMVC. Notably, our method significantly outperforms representative competing methods by more than 5% and 10% on the BBC and Caltech datasets, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Local structure learning for incomplete multi-view clustering
    Yongchun Wang
    Youlong Yang
    Tong Ning
    Applied Intelligence, 2024, 54 : 3308 - 3324
  • [42] Prototype Matching Learning for Incomplete Multi-View Clustering
    Yuan, Honglin
    Sun, Yuan
    Zhou, Fei
    Wen, Jing
    Yuan, Shihua
    You, Xiaojian
    Ren, Zhenwen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 828 - 841
  • [43] Neighbor structure aware based cross-view consensus graph learning for incomplete multi-view clustering
    Yang, Haifeng
    Li, Xingyi
    Chen, Yijing
    NEUROCOMPUTING, 2025, 624
  • [44] Joint learning of data recovering and graph contrastive denoising for incomplete multi-view clustering
    Wang, Haiyue
    Wang, Quan
    Miao, Qiguang
    Ma, Xiaoke
    INFORMATION FUSION, 2024, 104
  • [45] Incomplete Multi-View Clustering Based on Dynamic Dimensionality Reduction Weighted Graph Learning
    Yu, Yaosong
    Sun, Dongpu
    IEEE ACCESS, 2024, 12 : 19087 - 19099
  • [46] Self-Completed Bipartite Graph Learning for Fast Incomplete Multi-View Clustering
    Zhao, Xiaojia
    Shen, Qiangqiang
    Chen, Yongyong
    Liang, Yongsheng
    Chen, Junxin
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2166 - 2178
  • [47] Dual structure-aware consensus graph learning for incomplete multi-view clustering
    Sun, Lilei
    Wong, Wai Keung
    Fu, Yusen
    Wen, Jie
    Li, Mu
    Lu, Yuwu
    Fei, Lunke
    PATTERN RECOGNITION, 2025, 165
  • [48] Low-rank Tensor Graph Learning Based Incomplete Multi-view Clustering
    Wen J.
    Yan K.
    Zhang Z.
    Xu Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1433 - 1445
  • [49] Structured anchor-inferred graph learning for universal incomplete multi-view clustering
    He, Wenjue
    Zhang, Zheng
    Chen, Yongyong
    Wen, Jie
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (01): : 375 - 399
  • [50] Incomplete multi-view clustering by simultaneously learning robust representations and optimal graph structures
    Shang, Mingchao
    Liang, Cheng
    Luo, Jiawei
    Zhang, Huaxiang
    INFORMATION SCIENCES, 2023, 640