LSEWOA: An Enhanced Whale Optimization Algorithm with Multi-Strategy for Numerical and Engineering Design Optimization Problems

被引:0
|
作者
Wei, Junhao [1 ]
Gu, Yanzhao [1 ]
Yan, Yuzheng [1 ]
Li, Zikun [2 ]
Lu, Baili [3 ]
Pan, Shirou [3 ]
Cheong, Ngai [1 ]
机构
[1] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[2] South China Normal Univ, Sch Econ & Management, Guangzhou 510006, Peoples R China
[3] Zhongkai Univ Agr & Engn, Coll Anim Sci & Technol, Guangzhou 510225, Peoples R China
关键词
WOA; Spiral flight; Tangent flight; engineering design; inertia weight; numerical optimization; ANT COLONY OPTIMIZATION;
D O I
10.3390/s25072054
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Whale Optimization Algorithm (WOA) is a bio-inspired metaheuristic algorithm known for its simple structure and ease of implementation. However, WOA suffers from issues such as premature convergence, low population diversity in the later stages of iteration, slow convergence rate, low convergence accuracy, and an imbalance between exploration and exploitation. In this paper, we proposed an enhanced whale optimization algorithm with multi-strategy (LSEWOA). LSEWOA employs Good Nodes Set Initialization to generate uniformly distributed whale individuals, a newly designed Leader-Followers Search-for-Prey Strategy, a Spiral-based Encircling Prey strategy inspired by the concept of Spiral flight, and an Enhanced Spiral Updating Strategy. Additionally, we redesigned the update mechanism for convergence factor a to better balance exploration and exploitation. The effectiveness of the proposed LSEWOA was evaluated using CEC2005, and the impact of each improvement strategy was analyzed. We also performed a quantitative analysis of LSEWOA and compare it with other state-of-the-art metaheuristic algorithms in 30/50/100 dimensions. Finally, we applied LSEWOA to nine engineering design optimization problems to verify its capability in solving real-world optimization challenges. Experimental results demonstrate that LSEWOA outperformed better than other algorithms and successfully addressed the shortcomings of the classic WOA.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
    Huang, Jiaxu
    Hu, Haiqing
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [2] Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
    Jiaxu Huang
    Haiqing Hu
    Journal of Big Data, 11
  • [3] A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems
    Gao, Chenyang
    Li, Teng
    Gao, Yuelin
    Zhang, Ziyu
    MATHEMATICS, 2024, 12 (03)
  • [4] A Multi-strategy Improved Grasshopper Optimization Algorithm for Solving Global Optimization and Engineering Problems
    Liu, Wei
    Yan, Wenlv
    Li, Tong
    Han, Guangyu
    Ren, Tengteng
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [5] A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems
    Chen, Huiling
    Wang, Mingjing
    Zhao, Xuehua
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 369
  • [6] Enhanced Multi-Strategy Slime Mould Algorithm for Global Optimization Problems
    Dong, Yuncheng
    Tang, Ruichen
    Cai, Xinyu
    BIOMIMETICS, 2024, 9 (08)
  • [7] A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems
    Liu, Haijun
    Xiao, Jian
    Yao, Yuan
    Zhu, Shiyi
    Chen, Yi
    Zhou, Rui
    Ma, Yan
    Wang, Maofa
    Zhang, Kunpeng
    BIOMIMETICS, 2024, 9 (09)
  • [8] Multi-Strategy Golden Jackal Optimization for engineering design
    Yang, Wenbiao
    Lai, Tingfeng
    Fang, Yuhui
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04)
  • [9] EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems
    He, Kai
    Zhang, Yong
    Wang, Yu-Kun
    Zhou, Rong-He
    Zhang, Hong-Zhi
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 543 - 573
  • [10] Multi-strategy adaptive cuckoo search algorithm for numerical optimization
    Cheng, Jiatang
    Xiong, Yan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2031 - 2055