Phase composition, dielectric properties, bond characteristics, and Raman spectra of NaAg1-xBix/3MoO4 ceramics synthesized at ultra-low temperature

被引:0
作者
Chen, Yuan-Bin [1 ]
Xiong, Siyi [1 ]
机构
[1] Zhaoqing Univ, Sch Elect & Elect Engn, Zhaoqing 526061, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Microwave dielectric ceramics; Ultra-low temperature sintering; P-V-L theory; Raman spectra; SPECTROSCOPIC PROPERTIES; MICROWAVE; TRANSFORMATIONS; VALENCE; SYSTEM; CO;
D O I
10.1016/j.matchemphys.2025.130862
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the NaAg1-xBix/3MoO4 (x = 0.06, 0.12, 0.18, and 0.24) ceramics were successfully synthesized via solid-state reaction at 400-535 degrees C. Notably, the NaAg0.82Bi0.06MoO4 ceramic exhibited exceptional dielectric properties at 450 degrees C (epsilon r = 7.39 f 0.05, Q x f = 18,867 f 1480 GHz, tau f =-84.8 f 1.3 ppm/degrees C). The Rietveld refinement confirmed its spinel-like structure belonging to the Fd-3m (227) space group, along with the formation of a Na0.5Bi0.5MoO4 secondary phase, as supported by SEM and EDS analyses. Further investigation revealed that the Na0.5Bi0.5MoO4 phase adversely impacted the Q x f value, while the relative density positively correlated with Q x f. Based on the Shannon additivity rule, the contribution of Bi3+ ions to epsilon r was elucidated. The P-V-L theory provided a theoretical foundation for understanding the dielectric behavior of NaAg1-xBix/ 3MoO4 ceramics. Additionally, Raman spectroscopy directly confirmed the enhancement of molecular polarizability by Bi3+ ions and disclosed a negative correlation between the A1g vibration mode and Q x f, further elucidating the intimate link between internal lattice vibrations and microwave dielectric properties.
引用
收藏
页数:9
相关论文
共 47 条
[1]  
Almessiere M.A., Structure, magnetic and electrodynamic properties of SrInxFe12-xO4/Ni0.5Zn0.5Fe2O4
[2]   Structural and spectroscopic properties of self-activated monoclinic molybdate BaSm2(MoO4)4 [J].
Atuchin, V. V. ;
Aleksandrovsky, A. S. ;
Molokeev, M. S. ;
Krylov, A. S. ;
Oreshonkov, A. S. ;
Zhou, Di .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 729 :843-849
[3]   Exploration of structural, vibrational and spectroscopic properties of self-activated orthorhombic double molybdate RbEu(MoO4)2 with isolated MoO4 units [J].
Atuchin, Victor V. ;
Aleksandrovsky, Aleksandr S. ;
Bazarov, Bair G. ;
Bazarova, Jibzema G. ;
Chimitova, Olga D. ;
Denisenko, Yuriy G. ;
Gavrilova, Tatyana A. ;
Krylov, Alexander S. ;
Maximovskiy, Eugene A. ;
Molokeev, Maxim S. ;
Oreshonkov, Aleksandr S. ;
Pugachev, Alexey M. ;
Surovtsev, Nikolay V. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 785 :692-697
[4]   Crystal structure, Raman spectrum, bond characteristics, and terahertz time-domain spectrum of novel Na5Tm(MoO4)4 microwave dielectric ceramic with ultra-low sintering temperature and high quality factor [J].
Bao, Jian ;
Li, Hu ;
Xu, Xiaoyu ;
Guo, Weijia ;
Chen, Yueguang ;
Zhang, Yuping ;
Du, Jialun ;
Wu, Haitao ;
Duan, Guangbin ;
Yue, Zhenxing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
[5]   BOND-VALENCE PARAMETERS FOR SOLIDS [J].
BRESE, NE ;
OKEEFFE, M .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1991, 47 :192-197
[6]   Microwave dielectric properties of Co 2 P 2 O 7 ceramicsMicrowave dielectric properties of Co2P2O7 ceramics [J].
Chen, Xiaoqing ;
Li, Hao ;
Zhang, Pengcheng ;
Li, Gaosheng .
CERAMICS INTERNATIONAL, 2021, 47 (02) :1980-1985
[7]   Structural, Spectroscopic, Electric and Magnetic Properties of New Trigonal K5FeHf(MoO4)6 Orthomolybdate [J].
Grossman, Victoria ;
Atuchin, Victor ;
Bazarov, Bair G. ;
Aleksandrovsky, Aleksandr ;
Eremin, Evgeniy ;
Krylov, Alexander ;
Kuratieva, Natalia ;
Bazarova, Jibzema G. ;
Maximov, Nikolai ;
Molokeev, Maxim ;
Oreshonkov, Aleksandr ;
Pervukhina, Natalia ;
Shestakov, Nikolay .
MOLECULES, 2023, 28 (04)
[8]  
Hakki BW., 1960, IRE T MICROWAVE THEO, V8, P402, DOI DOI 10.1109/TMTT.1960.1124749
[9]  
Hao S.-Z., ACS Appl
[10]   Microwave dielectric properties of Li2M2(MoO4)3 (M = Co, Ni) for LTCC applications [J].
Huang C.-L. ;
Liou J.-N. ;
Tsai M.-H. ;
Huang W.-C. .
International Journal of Ceramic Engineering and Science, 2020, 2 (03) :130-139