Enhanced wildfire detection and semantic segmentation via fine-tuned deep learning models

被引:0
作者
Quang, Nguyen Hong [1 ]
Lee, Hanna [1 ]
Ahn, Seunghyo [2 ]
Kim, Gihong [3 ]
机构
[1] Gangneung Wonju Natl Univ, Dept Smart Infrastruct Pest Control, 7 Jukheon Gil, Gangneung Si 25457, Gangwon Do, South Korea
[2] Gangneung Wonju Natl Univ, Dept Smart Infrastruct Disaster Prevent, Gangneung Si, South Korea
[3] Gangneung Wonju Natl Univ, Dept Civil & Environm Engn, Room 103,Engn Bldg 2,7 Jukheon Gil, Gangneung Si 25457, Gangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; Object detection; Semantic segmentation; South Korea; Wildfire; PROBABILITY;
D O I
10.1007/s12145-025-01863-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Wildfires pose significant environmental and societal impacts worldwide. Deep learning models in computer vision have emerged as effective tools for improving early wildfire detection and semantic segmentation of flames and smoke. However, the scarcity of wildfire training datasets poses a challenge. To address this, we propose using human-induced tiny wildfire models to generate a comprehensive training dataset comprising 3,185 images. We further evaluate our models on real wildfire events in Gangneung City, South Korea, using 1,415 images. By fine-tuning popular deep learning backbones, including YOLOv8, U-Net(ResNet50), DeepLab(ResNet50), and DeepLab(EfficientNet), we achieve accurate wildfire segmentation with an average accuracy of approximately 90%. Notably, the YOLOv8 model exhibits superior performance in terms of accuracy, speed, and computational efficiency. Through extensive experiments, we demonstrate the robustness of the YOLOv8 model in detecting and segmenting wildfires, even in real-time scenarios using CCTV surveillance footage. Our findings highlight the potential of deploying such models for early wildfire detection and management.
引用
收藏
页数:21
相关论文
共 103 条
[71]   Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning [J].
Reid, Colleen E. ;
Jerrett, Michael ;
Petersen, Maya L. ;
Pfister, Gabriele G. ;
Morefield, Philip E. ;
Tager, Ira B. ;
Raffuse, Sean M. ;
Balmes, John R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (06) :3887-3896
[72]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[73]   A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery [J].
Roy, David P. ;
Huang, Haiyan ;
Houborg, Rasmus ;
Martins, Vitor S. .
REMOTE SENSING OF ENVIRONMENT, 2021, 264 (264)
[74]   FireDetXplainer: Decoding Wildfire Detection With Transparency and Explainable AI Insights [J].
Rubab, Syeda Fiza ;
Ghaffar, Arslan Abdul ;
Choi, Gyu Sang .
IEEE ACCESS, 2024, 12 :52378-52389
[75]   Forest fire surveillance systems: A review of deep learning methods [J].
Saleh, Azlan ;
Zulkifley, Mohd Asyraf ;
Harun, Hazimah Haspi ;
Gaudreault, Francis ;
Davison, Ian ;
Spraggon, Martin .
HELIYON, 2024, 10 (01)
[76]   Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images [J].
Seo, Youngmin ;
Youn, Youjeong ;
Kim, Seoyeon ;
Kang, Jonggu ;
Jeong, Yemin ;
Choi, Soyeon ;
Im, Yungyo ;
Lee, Yangwon .
KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (06) :1413-1425
[77]   Wildfire spreading prediction using multimodal data and deep neural network approach [J].
Shadrin, Dmitrii ;
Illarionova, Svetlana ;
Gubanov, Fedor ;
Evteeva, Ksenia ;
Mironenko, Maksim ;
Levchunets, Ivan ;
Belousov, Roman ;
Burnaev, Evgeny .
SCIENTIFIC REPORTS, 2024, 14 (01)
[78]   Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches [J].
Sim, Seongmun ;
Kim, Woohyeok ;
Lee, Jaese ;
Kang, Yoojin ;
Im, Jungho ;
Kwon, Chunguen ;
Kim, Sungyong .
KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (05) :1109-1123
[79]  
Singh S, 2024, Multimedia Tools and Applications, P1
[80]   Segmenter: Transformer for Semantic Segmentation [J].
Strudel, Robin ;
Garcia, Ricardo ;
Laptev, Ivan ;
Schmid, Cordelia .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :7242-7252