UAV Detection and Classification in Complex Environments Using Radar and Combined Machine-Learning Approaches

被引:0
作者
Eiadkaew, Seksan [1 ]
Boonpoonga, Akkarat [1 ]
Athikulwongse, Krit [2 ]
Kaemarungsi, Kamol [2 ]
Torrungrueng, Danai [3 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Engn, Dept Elect & Comp Engn, Bangkok 10800, Thailand
[2] Natl Sci & Technol Dev Agcy, Natl Elect & Comp Technol Ctr, Khlong Luang 12120, Thailand
[3] King Mongkuts Univ Technol North Bangkok, Fac Tech Educ, Bangkok 10800, Thailand
关键词
Radar; Autonomous aerial vehicles; Radar detection; Clutter; Doppler radar; Noise; Urban areas; Millimeter wave communication; Long short term memory; Laser radar; Classification; frequency-modulated continuous wave (FMCW) radar; hierarchical density-based spatial clustering of applications with noise (HDBSCAN); long short-term memory (LSTM) model; machine-learning (ML); uncrewed aerial vehicle (UAV) detection; FMCW RADAR;
D O I
10.1109/TMTT.2025.3551626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detecting uncrewed aerial vehicles (UAVs) has introduced significant challenges in ensuring safe and secure airspace, particularly in urban areas with high environmental clutter or complex environments. This article proposes a novel two-stage method for UAV detection and classification using a scanning frequency-modulated continuous wave (FMCW) radar system and machine-learning (ML) techniques. In the first stage, azimuth-range scattering point data transformed from the received radar signals are clustered using hierarchical density-based spatial clustering of applications with noise (HDBSCAN), and environmental boundaries are generated with a convex-hull algorithm to represent static clutter zones. In the second stage, a long short-term memory (LSTM) network analyzes points outside these boundaries, leveraging trajectory patterns to classify UAVs. Unlike conventional Doppler-based methods, the proposed approach excels in scenarios with slow-moving UAVs exhibiting near-zero Doppler shifts. Experimental results demonstrate that the proposed method achieves a detection and classification accuracy of up to 99.83% and an F1 score of 94.69%, outperforming conventional methods in both precision and clutter handling. These findings highlight the robustness of the proposed system in complex environments and its suitability for practical UAV detection applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Web Intrusion Classification System using Machine Learning Approaches
    Bhatnagar, Mansi
    Rozinaj, Gregor
    Yadav, Puneet Kumar
    PROCEEDINGS OF 2022 64TH INTERNATIONAL SYMPOSIUM ELMAR-2022, 2022, : 57 - 60
  • [32] Enhanced Heart Disease Classification Using Parallelization and Integrated Machine-Learning Techniques
    Panda, Subham
    Gupta, Rishik
    Kumar, Chandan
    Mishra, Rashi
    Gupta, Saransh
    Bhardwaj, Akash
    Kumar, Pratiksh
    Shukla, Prakhar
    Kumar, Bagesh
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT III, 2024, 2011 : 411 - 422
  • [33] Classification of glaucoma using hybrid features with machine learning approaches
    Thakur, Niharika
    Juneja, Mamta
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
  • [34] A Machine Learning Based Vehicle Classification in Forward Scattering Radar
    KANONA, M. O. H. A. M. M. E. D. E. A.
    ALIAS, M. O. H. A. M. A. D. Y.
    HASSAN, M. O. H. A. M. E. D. K. H. A. L. A. F. A. L. L. A.
    MOHAMED, K. H. A. L. I. D. S.
    KHAIRI, M. U. T. A. Z. H. H.
    HAMDAN, M. O. S. A. B.
    HAMDALLA, Y. A. S. S. I. N. A.
    OSMAN, O. M. N. I. A. M.
    AHMED, A. H. M. E. D. M. O.
    IEEE ACCESS, 2022, 10 : 64688 - 64700
  • [35] Skin cancer detection and classification using machine learning
    Monika, M. Krishna
    Vignesh, N. Arun
    Kumari, Ch Usha
    Kumar, M. N. V. S. S.
    Lydia, E. Laxmi
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 4266 - 4270
  • [36] Machine Learning Modeling of GPS Features with Applications to UAV Location Spoofing Detection and Classification
    Nayfeh, Mohammad
    Li, Yuchen
    Al Shamaileh, Khair
    Devabhaktuni, Vijay
    Kaabouch, Naima
    COMPUTERS & SECURITY, 2023, 126
  • [37] Real-Time Gesture Detection Based on Machine Learning Classification of Continuous Wave Radar Signals
    Ehrnsperger, Matthias G.
    Brenner, Thomas
    Hoese, Henri L.
    Siart, Uwe
    Eibert, Thomas F.
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 8310 - 8322
  • [38] Breast Mass Detection and Classification Using Machine Learning Approaches on Two-Dimensional Mammogram: A Review
    Shankari N.
    Kudva V.
    Hegde R.B.
    Critical Reviews in Biomedical Engineering, 2024, 52 (04) : 41 - 60
  • [39] A Deep Learning Approach for Drone Detection and Classification using Radar and Camera Sensor Fusion
    Mehta, Varun
    Dadboud, Fardad
    Bolic, Miodrag
    Mantegh, Iraj
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [40] Cervical Cancer Classification Using Combined Machine Learning and Deep Learning Approach
    Alquran, Hiam
    Mustafa, Wan Azani
    Abu Qasmieh, Isam
    Yacob, Yasmeen Mohd
    Alsalatie, Mohammed
    Al-Issa, Yazan
    Alqudah, Ali Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5117 - 5134