Sign changes in short intervals related to Rankin-Selberg L-functions in the level aspect

被引:0
作者
Hou, Fei [1 ]
Wang, Yishen [1 ]
Pan, Junjie [1 ]
机构
[1] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
关键词
Automorphic forms; Coefficients of Dirichlet series; Rankin-Selberg L-functions; Local factors; Sign change; FOURIER COEFFICIENTS; HECKE EIGENVALUES; MULTIPLICITY ONE; FUNCTORIALITY; NEWFORMS; NUMBER;
D O I
10.1007/s11139-025-01101-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the sign-change problem for Fourier coefficients of two and three newforms. One of our main ingredients is determine the Rankin-Selberg L-functions corresponding to the configurations GL4xGL4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GL}_4\times \text {GL}_4$$\end{document} and GL8xGL8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GL}_8\times \text {GL}_8$$\end{document} in the level aspect concluding the local factors at ramified and unramified places, as well as the first or second moment related to these L-functions in the level aspect. We improve and generalize previous results.
引用
收藏
页数:28
相关论文
共 44 条
[1]   Nonvanishing of Fourier coefficients of newforms in progressions [J].
Alkan, E ;
Zaharescu, A .
ACTA ARITHMETICA, 2005, 116 (01) :81-98
[2]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[3]  
Bcherer S., 1996, Lond. Math. Soc. Lect. Note Ser, V235, P1
[4]  
Choie Y, 2009, AM J MATH, V131, P517
[5]   LEVEL-RAISING AND SYMMETRIC POWER FUNCTORIALITY, III [J].
Clozel, Laurent ;
Thorne, Jack A. .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (02) :325-402
[6]   Level raising and symmetric power functoriality, II [J].
Clozel, Laurent ;
Thorne, Jack A. .
ANNALS OF MATHEMATICS, 2015, 181 (01) :303-359
[7]   Level-raising and symmetric power functoriality, I [J].
Clozel, Laurent ;
Thorne, Jack A. .
COMPOSITIO MATHEMATICA, 2014, 150 (05) :729-748
[8]  
Dasgupta A., 2024, arXiv, DOI arXiv:2407.06962
[9]   Automorphy of Symm5(GL(2)) and base change [J].
Dieulefait, Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :619-656
[10]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471