Enhancement of the ensemble nonlinear least-squares algorithm for i4DVar

被引:0
作者
Tian, Xiangjun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Environm, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
data assimilation; i4DVar; nonlinear least squares; numerical weather prediction; DATA ASSIMILATION; METEOROLOGICAL OBSERVATIONS; VARIATIONAL ASSIMILATION; ADJOINT; IMPLEMENTATION; FORMULATION; SYSTEM;
D O I
10.1002/qj.4981
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The integral-correcting 4DVar method (i4DVar) is an evolution of the traditional strongly constrained 4DVar method (s4DVar), which performs much better than s4DVar without increasing computational cost and complexity, and is solved using an ensemble, adjoint-free algorithm (i.e., NLS-i4DVar). However, like most previous ensemble-based methods, NLS-i4DVar also faces the paradox of using the same set of perturbed samples to approximate the background error covariance matrix and the joint tangent linear (TL) operator, making it difficult to guarantee their accuracy. To solve this problem, we divide ensemble anomalies with a (very large) shrinkage factor omega$$ \omega $$ to ensure the validity of the TL operator approximation, while still using the original (unshrunk) samples to approximate the background error covariance matrix, which ultimately solves the above difficulty. Finally, the advantages of the newly developed algorithm are verified by numerical evaluation experiments.
引用
收藏
页数:15
相关论文
共 44 条
[1]  
Bloom SC, 1996, MON WEATHER REV, V124, P1256, DOI 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO
[2]  
2
[3]   The evolution of the ECMWF hybrid data assimilation system [J].
Bonavita, Massimo ;
Holm, Elias ;
Isaksen, Lars ;
Fisher, Mike .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (694) :287-303
[4]   Observing-system experiments in the ECMWF 4D-Var data assimilation system [J].
Bouttier, F ;
Kelly, G .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2001, 127 (574) :1469-1488
[5]   Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office [J].
Clayton, A. M. ;
Lorenc, A. C. ;
Barker, D. M. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (675) :1445-1461
[6]   VARIATIONAL ASSIMILATION OF METEOROLOGICAL OBSERVATIONS WITH THE ADJOINT VORTICITY EQUATION .2. NUMERICAL RESULTS [J].
COURTIER, P ;
TALAGRAND, O .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1987, 113 (478) :1329-1347
[7]   Coupled data assimilation at ECMWF: current status, challenges and future developments [J].
de Rosnay, Patricia ;
Browne, Philip ;
de Boisseson, Eric ;
Fairbairn, David ;
Hirahara, Yoichi ;
Ochi, Kenta ;
Schepers, Dinand ;
Weston, Peter ;
Zuo, Hao ;
Alonso-Balmaseda, Magdalena ;
Balsamo, Gianpaolo ;
Bonavita, Massimo ;
Borman, Niels ;
Brown, Andy ;
Chrust, Marcin ;
Dahoui, Mohamed ;
Chiara, Giovanna ;
English, Stephen ;
Geer, Alan ;
Healy, Sean ;
Hersbach, Hans ;
Laloyaux, Patrick ;
Magnusson, Linus ;
Massart, Sebastien ;
McNally, Anthony ;
Pappenberger, Florian ;
Rabier, Florence .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (747) :2672-2702
[8]  
Dennis JE., 1996, Classics in applied mathematics, DOI 10.1137/1.9781611971200
[9]   4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations [J].
Desroziers, Gerald ;
Camino, Jean-Thomas ;
Berre, Loik .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (684) :2097-2110