On the energy dissipation mechanism for weak solutions of the Camassa-Holm type equations and their applications

被引:0
作者
Wang, Yanqing [1 ]
Liu, Jingjing [1 ]
Liu, Jitao [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Beijing Univ Technol, Sch Math Stat & Mech, Dept Math, Beijing 100124, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2025年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Camassa-Holm equation; Dullin-Gottwald-Holm equation; Onsager's conjecture; Energy dissipation; SHALLOW-WATER EQUATION; GLOBAL EXISTENCE; BLOW-UP; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; BREAKING WAVES; EULER; CONJECTURE; UNIQUENESS; MODELS;
D O I
10.1007/s00605-025-02075-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the energy dissipation mechanism for weak solutions of various Camassa-Holm type equations (including the (full) Camassa-Holm and Dullin-Gottwald-Holm equation) by establishing an equation of local energy balance in the sense of distributions with a precise defect term. Compared with the recent work for 3D inviscid Camassa-Holm equations by Boutros and Titi in [2, Phys. D. 443 (2023)], we proved that the L2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2<^>{+}}$$\end{document} control in time and space of del u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u$$\end{document} (instead ofL3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{3}$$\end{document}in [2]) implies the local energy balance with dissipation term, which indicates that there is a obvious difference between 1D and 3D models on this issue. As their applications, we also showed that all the Onsager exponents of above models are 1 and the Onsager exponents for both full Camassa-Holm and Dullin-Gottwald-Holm equations are given firstly.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] The regularity of local solutions for a generalized Camassa-Holm type equation
    Lai, Shao Yong
    Zhang, Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (12) : 2065 - 2076
  • [42] Equations of the Camassa-Holm hierarchy
    Ivanov, R. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) : 952 - 959
  • [43] DISSIPATIVE SOLUTIONS FOR THE CAMASSA-HOLM EQUATION
    Holden, Helge
    Raynaud, Xavier
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1047 - 1112
  • [44] Patched peakon weak solutions of the modified Camassa-Holm equation
    Gao, Yu
    Li, Lei
    Liu, Jian-Guo
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 390 : 15 - 35
  • [45] Global weak solutions for a two-component Camassa-Holm shallow water system
    Guan, Chunxia
    Yin, Zhaoyang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) : 1132 - 1154
  • [46] Ill-posedness of the Camassa-Holm and related equations in the critical space
    Guo, Zihua
    Liu, Xingxing
    Molinet, Luc
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1698 - 1707
  • [47] Solutions of the Camassa-Holm equation with accumulating breaking times
    Grunert, Katrin
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (02) : 91 - 105
  • [48] Perturbational blowup solutions to the 2-component Camassa-Holm equations
    Yuen, Manwai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) : 596 - 602
  • [49] Equations of Camassa-Holm type and the geometry of loop groups
    Gorka, Przemyslaw
    Pons, Daniel J.
    Reyes, Enrique G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 87 : 190 - 197
  • [50] Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) : 314 - 322