On the energy dissipation mechanism for weak solutions of the Camassa-Holm type equations and their applications

被引:0
作者
Wang, Yanqing [1 ]
Liu, Jingjing [1 ]
Liu, Jitao [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Beijing Univ Technol, Sch Math Stat & Mech, Dept Math, Beijing 100124, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2025年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Camassa-Holm equation; Dullin-Gottwald-Holm equation; Onsager's conjecture; Energy dissipation; SHALLOW-WATER EQUATION; GLOBAL EXISTENCE; BLOW-UP; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; BREAKING WAVES; EULER; CONJECTURE; UNIQUENESS; MODELS;
D O I
10.1007/s00605-025-02075-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the energy dissipation mechanism for weak solutions of various Camassa-Holm type equations (including the (full) Camassa-Holm and Dullin-Gottwald-Holm equation) by establishing an equation of local energy balance in the sense of distributions with a precise defect term. Compared with the recent work for 3D inviscid Camassa-Holm equations by Boutros and Titi in [2, Phys. D. 443 (2023)], we proved that the L2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2<^>{+}}$$\end{document} control in time and space of del u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u$$\end{document} (instead ofL3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{3}$$\end{document}in [2]) implies the local energy balance with dissipation term, which indicates that there is a obvious difference between 1D and 3D models on this issue. As their applications, we also showed that all the Onsager exponents of above models are 1 and the Onsager exponents for both full Camassa-Holm and Dullin-Gottwald-Holm equations are given firstly.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Nonlocal Symmetries of the Camassa-Holm Type Equations
    Lu Zhao
    Changzheng Qu
    Chinese Annals of Mathematics, Series B, 2020, 41 : 407 - 418
  • [32] The Uniqueness of Strong Solutions for the Camassa-Holm Equation
    Wu, Meng
    Lai, Chong
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [33] Conservative solutions for higher-order Camassa-Holm equations
    Ding, Danping
    Lv, Peng
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)
  • [34] Global solutions for the modified Camassa-Holm equation
    Ji, Shuguan
    Zhou, Yonghui
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [35] ON THE INITIAL VALUE PROBLEM FOR HIGHER DIMENSIONAL CAMASSA-HOLM EQUATIONS
    Yan, Kai
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 1327 - 1358
  • [36] Global existence of weak solutions for a three-component Camassa-Holm system with N-peakon solutions
    Luo, Wei
    Yin, Zhaoyang
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (06) : 1096 - 1111
  • [37] HAMILTONIAN STRUCTURE OF PEAKONS AS WEAK SOLUTIONS FOR THE MODIFIED CAMASSA-HOLM EQUATION
    Anco, Stephen
    Kraus, Daniel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) : 4449 - 4465
  • [38] The Local Strong and Weak Solutions for a Nonlinear Dissipative Camassa-Holm Equation
    Lai, Shaoyong
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [39] On the weak solutions for the rotation-two-component Camassa-Holm equation
    Yang, Li
    Mu, Chunlai
    Zhou, Shouming
    Tu, Xinyu
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)
  • [40] Wave-breaking and weak instability for the stochastic modified two-component Camassa-Holm equations
    Zhao, Yongye
    Li, Yongsheng
    Chen, Fei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):