On the energy dissipation mechanism for weak solutions of the Camassa-Holm type equations and their applications

被引:0
|
作者
Wang, Yanqing [1 ]
Liu, Jingjing [1 ]
Liu, Jitao [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Beijing Univ Technol, Sch Math Stat & Mech, Dept Math, Beijing 100124, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2025年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Camassa-Holm equation; Dullin-Gottwald-Holm equation; Onsager's conjecture; Energy dissipation; SHALLOW-WATER EQUATION; GLOBAL EXISTENCE; BLOW-UP; WELL-POSEDNESS; CONSERVATIVE SOLUTIONS; BREAKING WAVES; EULER; CONJECTURE; UNIQUENESS; MODELS;
D O I
10.1007/s00605-025-02075-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the energy dissipation mechanism for weak solutions of various Camassa-Holm type equations (including the (full) Camassa-Holm and Dullin-Gottwald-Holm equation) by establishing an equation of local energy balance in the sense of distributions with a precise defect term. Compared with the recent work for 3D inviscid Camassa-Holm equations by Boutros and Titi in [2, Phys. D. 443 (2023)], we proved that the L2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2<^>{+}}$$\end{document} control in time and space of del u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u$$\end{document} (instead ofL3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{3}$$\end{document}in [2]) implies the local energy balance with dissipation term, which indicates that there is a obvious difference between 1D and 3D models on this issue. As their applications, we also showed that all the Onsager exponents of above models are 1 and the Onsager exponents for both full Camassa-Holm and Dullin-Gottwald-Holm equations are given firstly.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The study on solutions to Camassa-Holm equation with weak dissipation
    Ding, DP
    Tian, LX
    Xu, G
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (03) : 483 - 492
  • [2] On the classical solutions for the high order Camassa-Holm type equations
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [3] GENERIC REGULARITY OF CONSERVATIVE SOLUTIONS TO CAMASSA-HOLM TYPE EQUATIONS
    Li, Mingjie
    Zhang, Qingtian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2920 - 2949
  • [4] Regularity of weak solutions for the fractional Camassa-Holm equations
    Yang, Jiaqi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [5] On weak solutions to a generalized Camassa-Holm equation with solitary wave
    Guo, Yunxi
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [6] Global weak solutions for a generalized Camassa-Holm equation
    Tu, Xi
    Yin, Zhaoyang
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2457 - 2475
  • [7] BLOW-UP FOR TWO-COMPONENT CAMASSA-HOLM EQUATION WITH GENERALIZED WEAK DISSIPATION
    Chen, Wenxia
    Liu, Jingyi
    Ding, Danping
    Tian, Lixin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3769 - 3784
  • [8] On H 2-solutions for a Camassa-Holm type equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [9] On measures of accretion and dissipation for solutions of the Camassa-Holm equation
    Jamroz, Grzegorz
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2017, 14 (04) : 721 - 754
  • [10] Well-posedness of modified Camassa-Holm equations
    McLachlan, Robert
    Zhang, Xingyou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3241 - 3259