Involutions in Coxeter groupsInvolutions in Coxeter groupsA. Reimann et al.

被引:0
作者
Anna Reimann [1 ]
Yuri Santos Rego [2 ]
Petra Schwer [3 ]
Olga Varghese [4 ]
机构
[1] Otto von Guericke University Magdeburg,Faculty of Mathematics
[2] University of Lincoln,Charlotte Scott Research Centre for Algebra
[3] Ruprecht Karls University Heidelberg,Institute of Mathematics
[4] Heinrich Heine University Düsseldorf,Institute of Mathematics
关键词
Coxeter group; Involution; Conjugacy classes;
D O I
10.1007/s10468-025-10332-x
中图分类号
学科分类号
摘要
We combinatorially characterize the number cc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{cc}_2$$\end{document} of conjugacy classes of involutions in any Coxeter group in terms of higher rank odd graphs. This notion naturally generalizes the concept of odd graphs, used previously to count the number of conjugacy classes of reflections. Moreover, we provide formulae for finite and affine types, besides computing cc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{cc}_2$$\end{document} for all triangle groups and RACGs.
引用
收藏
页码:647 / 667
页数:20
相关论文
empty
未找到相关数据