FACTORIZATION IN THE RING OF ARITHMETIC FUNCTIONS ON GAUSSIAN INTEGERS

被引:0
作者
Chowdhury, Jaki [1 ]
机构
[1] Ohio Northern Univ, Sch Math & Phys Sci, 1 525 S Main St, Ada, OH 45810 USA
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2025年 / 64卷 / 02期
关键词
Gaussian integers; arithmetic functions; factorization;
D O I
10.17654/0972555525007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the multiplicative structure of the ring of complex valued arithmetic functions defined on the ring of Gaussian integers, and show that this ring is a unique factorization domain.
引用
收藏
页码:117 / 132
页数:16
相关论文
共 30 条
  • [1] Alkan E., 2006, Hiroshima Math. J., V36, P113
  • [2] ARITHMETICAL FUNCTIONS IN SEVERAL VARIABLES
    Alkan, Emre
    Zaharescu, Alexandru
    Zaki, Mohammad
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (03) : 383 - 399
  • [3] Multidimensional averages and Dirichlet convolution
    Alkan, Emre
    Zaharescu, Alexandru
    Zaki, Mohammad
    [J]. MANUSCRIPTA MATHEMATICA, 2007, 123 (03) : 251 - 267
  • [4] Bhattacharjee D., 1999, Georgian Math. J., V6, P299
  • [5] Carroll T. B., 1975, J. Austral. Math. Soc. Ser. A, V20, P348
  • [6] Cashwell E.D., 1959, Pacific J. Math, V9, P975
  • [7] Haukkanen P., 1989, Portugal. Math., V46, P59
  • [8] A subgroup of the group of units in the ring of arithmetic functions
    MacHenry, T
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (03) : 1055 - 1065
  • [9] Migliorato R., 1979, Atti Soc. Peloritana Sci. Fis. Mat. Natur., V25, P255
  • [10] Narkiewicz W., 1963, Colloq. Math., V10, P81