Performance analysis of Thue Morse acoustic resonators for noise reduction

被引:1
作者
Zaky, Zaky A. [1 ,2 ,3 ]
El Malki, Mohamed [4 ]
Antraoui, Ilyas [4 ]
Khettabi, Ali [4 ]
Sallah, Mohammed [5 ]
机构
[1] Beni Suef Univ, Fac Sci, Phys Dept, Bani Suwayf 62514, Egypt
[2] Acad Sci Res & Technol ASRT, Cairo, Egypt
[3] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Russia
[4] Mohammed First Univ, Fac Sci, Dept Phys, Lab Mat Waves Energy & Environm, Oujda 60000, Morocco
[5] Univ Bisha, Coll Sci, Dept Phys, POB 344, Bisha 61922, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Thue-Morse phononic crystals; Acoustic band gap; Quasi-periodic structures; Acoustic wave propagation; Noise reduction; TRANSFER-MATRIX METHOD; PHONONIC CRYSTALS; WAVE-PROPAGATION; TRANSMISSION; RESONANCES; GEODESICS; SURFACE; DUCT;
D O I
10.1038/s41598-025-00903-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article explores acoustic band gap in the Thue-Morse phononic crystal structures for application in acoustic filtering. By using the unique nature of Thue-Morse sequences, we systematically analyze transmission spectra over many generations of structures using the transfer matrix and finite element methods. The proposed generalized Thue-Morse is constructed by alternating blocks based on two resonator sequences. The first sequence consists of parallel open resonators while the second block has an open resonator. The results show that acoustic band gaps can be widened and fragmented by adjusting resonator coupling strength and structural complexity. Higher-order resonances and localized modes enable the formation of sub-gaps in the frequency-selective response. These findings highlight the potential of Thue-Morse phononic crystals for precise acoustic filtering and wave manipulation in advanced material applications.
引用
收藏
页数:16
相关论文
共 62 条
[31]   Emergence of quasiperiodic Bloch wave functions in quasicrystals [J].
Lesser, Omri ;
Lifshitz, Ron .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[32]   Elastic wave propagation and localization in band gap materials: a review [J].
Li FengMing ;
Wang YiZe .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2012, 55 (10) :1734-1746
[33]   Low frequency noise control in duct based on locally resonant membrane with attached resonators [J].
Li, Jinze ;
Zuo, Hongwei ;
Shen, Cheng ;
Leung, Randolph C. K. .
JOURNAL OF VIBRATION AND CONTROL, 2023, 29 (11-12) :2817-2828
[34]   Interface states of dipole-like distributions in a quasi-periodic acoustic waveguide [J].
Liu, Ting ;
Fan, Ya-Xian ;
Zhang, Jia-Yi ;
Su, Yu ;
Tao, Zhi-Yong .
APPLIED ACOUSTICS, 2021, 181
[35]   Non-Bragg Bands in Acoustic Quasi-Periodic Fibonacci Waveguides [J].
Ma, Bo-Yang ;
Liu, Ting ;
Liu, Wen-Bei ;
Xue, Jiu-Ling ;
Tao, Zhi-Yong .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (09)
[36]   Spectral Classification of One-Dimensional Binary Aperiodic Crystals: An Algebraic Approach [J].
Macia, Enrique .
ANNALEN DER PHYSIK, 2017, 529 (10)
[37]   Phonons in hybrid Fibonacci/periodic multilayers [J].
Montalban, A. ;
Velasco, V. R. ;
Tutor, J. ;
Fernandez-Velicia, F. J. .
SURFACE SCIENCE, 2009, 603 (06) :938-944
[38]  
Morse HM, 1921, T AM MATH SOC, V22, P84
[39]   A one-to-one representation of geodesics on a surface of negative curvature [J].
Morse, HM .
AMERICAN JOURNAL OF MATHEMATICS, 1921, 43 :33-51
[40]   Omnidirectional mirror based on the aperiodic and hybrid-order aperiodic-periodic chirped multilayers [J].
Pourmasoud, Saeid ;
Falcone, P. asquale ;
Moretti, Luigi .
OPTICAL MATERIALS EXPRESS, 2024, 14 (02) :249-261