Advancing Federated Learning Privacy With Quantum Communication Techniques: A Robust Scalable Framework

被引:0
作者
Pei, Jiaming [1 ]
Wang, Lukun [2 ]
Awan, Nabeela [3 ]
Alturki, Ryan [4 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
[2] Shandong Univ Sci & Technol, Coll Intelligent Equipment, Tai An 271019, Peoples R China
[3] Business Technol Management Grp USA, Aurora, IL 60504 USA
[4] Umm Al Qura Univ, Coll Comp, Dept Software Engn, Mecca 21955, Saudi Arabia
来源
IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE | 2025年 / 11卷 / 02期
关键词
Privacy; Data privacy; Federated learning; Systems architecture; Smart transportation; Servers; Quantum networks; Artificial intelligence; Intelligent transportation systems; Faces;
D O I
10.1109/MSMC.2024.3509821
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) provides a collaborative model allowing multiple entities to collectively train artificial intelligence (AI) systems while minimizing data sharing to enhance privacy. Despite its advancements, traditional FL still faces security issues during the exchange of model parameters. The advent of quantum networks, which offer inherent security benefits, prompts us to introduce a new paradigm: quantum communication-based FL (QC-FL). This robust, scalable framework improves data control and mitigates security risks associated with parameter exchange. Our study outlines the key technologies and architecture underpinning QC-FL, illustrating its utility in safeguarding sensitive patient data and enhancing intelligent transportation systems.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 14 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[3]   Quantum Internet: Networking Challenges in Distributed Quantum Computing [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Tafuri, Francesco ;
Cataliotti, Francesco Saverio ;
Gherardini, Stefano ;
Bianchi, Giuseppe .
IEEE NETWORK, 2020, 34 (01) :137-143
[4]   SAFELearn: Secure Aggregation for private FEderated Learning [J].
Fereidooni, Hossein ;
Marchal, Samuel ;
Miettinen, Markus ;
Mirhoseini, Azalia ;
Moellering, Helen ;
Thien Duc Nguyen ;
Rieger, Phillip ;
Sadeghi, Ahmad-Reza ;
Schneider, Thomas ;
Yalame, Hossein ;
Zeitouni, Shaza .
2021 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2021), 2021, :56-62
[5]  
Kartsakli E, 2023, EUR CONF NETW COMMUN, P478, DOI [10.1109/EUCNC/6GSUMMIT58263.2023.10188371, 10.1109/EuCNC/6GSummit58263.2023.10188371]
[6]   Federated Learning: Challenges, Methods, and Future Directions [J].
Li, Tian ;
Sahu, Anit Kumar ;
Talwalkar, Ameet ;
Smith, Virginia .
IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (03) :50-60
[7]  
Oh SJ, 2019, P121, DOI [DOI 10.1007/978-3-030-28954, 10.1007/978-3-030-28954-6_7]
[8]   Federated Learning in Vehicular Networks: Opportunities and Solutions [J].
Posner, Jason ;
Tseng, Lewis ;
Aloqaily, Moayad ;
Jararweh, Yaser .
IEEE NETWORK, 2021, 35 (02) :152-159
[9]   Wearable Hardware Design for the Internet of Medical Things (IoMT) [J].
Qureshi, Fayez ;
Krishnan, Sridhar .
SENSORS, 2018, 18 (11)
[10]   Machine Learning Models that Remember Too Much [J].
Song, Congzheng ;
Ristenpart, Thomas ;
Shmatikov, Vitaly .
CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, :587-601