The nonlinear fractional Rayleigh-Stokes problem on an infinite interval

被引:0
|
作者
Wang, Jing Na [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Rayleigh-Stokes problem (primary); Riemann-Liouville derivative; Global mild solution; Existence; GENERALIZED 2ND-GRADE FLUID; MAXWELL; EDGE;
D O I
10.1007/s13540-025-00408-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of mild solutions of the nonlinear fractional Rayleigh-Stokes problem for a generalized second grade fluid on an infinite interval. We firstly show the boundedness and continuity of solution operator. And then, by using a generalized Arzel & agrave;-Ascoli theorem and some new techniques, we get the compactness on the infinite interval. Moreover, we prove the existence of global mild solutions of nonlinear fractional Rayleigh-Stokes problem.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] On Nonlinear Neutral Fractional Integrodifferential Inclusions with Infinite Delay
    Li, Fang
    Xiao, Ti-Jun
    Xu, Hong-Kun
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [32] A note on terminal value problems for fractional differential equations on infinite interval
    Shah, S. A. Hussain
    Rehman, Mujeeb Ur
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 118 - 125
  • [33] Existence, uniqueness, and multiplicity results on positive solutions for a class of Hadamard-type fractional boundary value problem on an infinite interval
    Zhang, Wei
    Liu, Wenbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2251 - 2275
  • [34] Positive Solutions for a System of Hadamard Fractional Boundary Value Problems on an Infinite Interval
    Tudorache, Alexandru
    Luca, Rodica
    AXIOMS, 2023, 12 (08)
  • [35] New study on Cauchy problems of fractional stochastic evolution systems on an infinite interval
    Sivasankar, S.
    Nadhaprasadh, K.
    Kumar, M. Sathish
    Al-Omari, Shrideh
    Udhayakumar, R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 890 - 904
  • [36] Minimal Nonnegative Solution of Nonlinear Impulsive Differential Equations on Infinite Interval
    Zhang, Xuemei
    Yang, Xiaozhong
    Feng, Meiqiang
    BOUNDARY VALUE PROBLEMS, 2011,
  • [37] On the interior Bernoulli free boundary problem for the fractional Laplacian on an interval
    Kulczycki, Tadeusz
    Wszola, Jacek
    COLLECTANEA MATHEMATICA, 2025, 76 (01) : 11 - 34
  • [38] Existence and asymptotic behavior of solutions of a boundary value problem on an infinite interval
    Agarwal, RP
    Mustafa, OG
    Rogovchenko, YV
    MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (2-3) : 135 - 157
  • [39] The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 218 - 228
  • [40] Initial value problem for a fractional neutral differential equation with infinite delay
    Abdo, Mohammed S.
    Panchal, Satish K.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 1195 - 1206