Applications of generative adversarial networks in the diagnosis, prognosis, and treatment of ophthalmic diseases

被引:0
作者
Doorly, Robert [1 ]
Ong, Joshua [2 ]
Waisberg, Ethan [1 ]
Sarker, Prithul [3 ]
Zaman, Nasif [3 ]
Tavakkoli, Alireza [3 ]
Lee, Andrew G. [4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Univ Michigan, Kellogg Eye Ctr, Dept Ophthalmol & Visual Sci, Ann Arbor, MI USA
[3] Univ Nevada, Dept Comp Sci & Engn, Human Machine Percept Lab, Reno, NV USA
[4] Baylor Coll Med, Ctr Space Med, Houston, TX USA
[5] Houston Methodist Hosp, Blanton Eye Inst, Dept Ophthalmol, Houston, TX USA
[6] Houston Methodist Hosp, Houston Methodist Res Inst, Houston, TX USA
[7] Weill Cornell Med, Dept Ophthalmol, New York, NY USA
[8] Weill Cornell Med, Dept Neurol, New York, NY USA
[9] Weill Cornell Med, Dept Neurosurg, New York, NY USA
[10] Univ Texas Med Branch, Dept Ophthalmol, Galveston, TX USA
[11] Univ Texas MD Anderson Canc Ctr, Houston, TX USA
[12] Texas A&M Sch Med, Bryan, TX USA
[13] Univ Iowa Hosp & Clin, Dept Ophthalmol, Iowa City, IA USA
关键词
Generative AI; Generative Adversarial Networks; Ophthalmology; Machine Learning; Eye Disease; Deep Learning; DIABETIC-RETINOPATHY; GLOBAL PREVALENCE; MACULAR DEGENERATION; HIGH MYOPIA; FUNDUS; CATARACT; PREMATURITY; SEGMENTATION; PROGRESSION; CHALLENGES;
D O I
10.1007/s00417-025-06830-9
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PurposeGenerative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis. This narrative review focusses on the application of GANs in ophthalmology, in order to provide a critical account of the current state and ongoing challenges for healthcare professionals and allied scientists who are interested in this rapidly evolving field.MethodsWe performed a search of studies that apply generative adversarial networks (GANs) in diagnosis, therapy and prognosis of eight eye diseases. These disparate tasks were selected to highlight developments in GAN techniques, differences and common features to aid practitioners and future adopters in the field of ophthalmology.ResultsThe studies we identified show that GANs have demonstrated capacity to: generate realistic and useful synthetic images, convert image modality, improve image quality, enhance extraction of relevant features, and provide prognostic predictions based on input images and other relevant data.ConclusionThe broad range of architectures considered describe how GAN technology is evolving to meet different challenges (including segmentation and multi-modal imaging) that are of particular relevance to ophthalmology. The wide availability of datasets now facilitates the entry of new researchers to the field. However mainstream adoption of GAN technology for clinical use remains contingent on larger public datasets for widespread validation and necessary regulatory oversight.
引用
收藏
页数:18
相关论文
共 108 条
[51]   FQ-UWF: Unpaired Generative Image Enhancement for Fundus Quality Ultra-Widefield Retinal Images [J].
Lee, Kang Geon ;
Song, Su Jeong ;
Lee, Soochahn ;
Kim, Bo Hee ;
Kong, Mingui ;
Lee, Kyoung Mu .
BIOENGINEERING-BASEL, 2024, 11 (06)
[52]   Artificial intelligence in ophthalmology: The path to the real-world clinic [J].
Li, Zhongwen ;
Wang, Lei ;
Wu, Xuefang ;
Jiang, Jiewei ;
Qiang, Wei ;
Xie, He ;
Zhou, Hongjian ;
Wu, Shanjun ;
Shao, Yi ;
Chen, Wei .
CELL REPORTS MEDICINE, 2023, 4 (07)
[53]   VSG-GAN: A high-fidelity image synthesis method with semantic manipulation in retinal fundus image [J].
Liu, Junjie ;
Xu, Shixin ;
He, Ping ;
Wu, Sirong ;
Luo, Xi ;
Deng, Yuhui ;
Huang, Huaxiong .
BIOPHYSICAL JOURNAL, 2024, 123 (17) :2815-2829
[54]   Digital ray: enhancing cataractous fundus images using style transfer generative adversarial networks to improve retinopathy detection [J].
Liu, Lixue ;
Hong, Jiaming ;
Wu, Yuxuan ;
Liu, Shaopeng ;
Wang, Kai ;
Li, Mingyuan ;
Zhao, Lanqin ;
Liu, Zhenzhen ;
Li, Longhui ;
Cui, Tingxin ;
Tsui, Ching-Kit ;
Xu, Fabao ;
Hu, Weiling ;
Yun, Dongyuan ;
Chen, Xi ;
Shang, Yuanjun ;
Bi, Shaowei ;
Wei, Xiaoyue ;
Lai, Yunxi ;
Lin, Duoru ;
Fu, Zhe ;
Deng, Yaru ;
Cai, Kaimin ;
Xie, Yi ;
Cao, Zizheng ;
Wang, Dongni ;
Zhang, Xulin ;
Dongye, Meimei ;
Lin, Haotian ;
Wu, Xiaohang .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (10) :1423-1429
[55]   Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network [J].
Liu, Yutong ;
Yang, Jingyuan ;
Zhou, Yang ;
Wang, Weisen ;
Zhao, Jianchun ;
Yu, Weihong ;
Zhang, Dingding ;
Ding, Dayong ;
Li, Xirong ;
Chen, Youxin .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2020, 104 (12) :1735-1740
[56]   Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network [J].
Luo, Yuhao ;
Chen, Kun ;
Liu, Lei ;
Liu, Jicheng ;
Mao, Jianbo ;
Ke, Genjie ;
Sun, Mingzhai .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (12) :3374-3383
[57]  
Masalkhi M., 2023, Encyclopedia, V3, P1187, DOI [10.3390/encyclopedia3040086, DOI 10.3390/ENCYCLOPEDIA3040086]
[58]   Deep learning in ophthalmic and orbital ultrasound for spaceflight associated neuro-ocular syndrome (SANS) [J].
Masalkhi, Mouayad ;
Ong, Joshua ;
Waisberg, Ethan ;
Lee, Andrew G. .
EYE, 2024, 38 (07) :1397-1397
[59]   An overview of thyroid eye disease [J].
McAlinden, Colm .
EYE AND VISION, 2014, 1
[60]   Severity of visual field loss and health-related quality of life [J].
McKean-Cowdin, Roberta ;
Varma, Rohit ;
Wu, Joanne ;
Hays, Ron D. ;
Azen, Stanley P. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2007, 143 (06) :1013-1023