Applications of generative adversarial networks in the diagnosis, prognosis, and treatment of ophthalmic diseases

被引:0
作者
Doorly, Robert [1 ]
Ong, Joshua [2 ]
Waisberg, Ethan [1 ]
Sarker, Prithul [3 ]
Zaman, Nasif [3 ]
Tavakkoli, Alireza [3 ]
Lee, Andrew G. [4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Univ Michigan, Kellogg Eye Ctr, Dept Ophthalmol & Visual Sci, Ann Arbor, MI USA
[3] Univ Nevada, Dept Comp Sci & Engn, Human Machine Percept Lab, Reno, NV USA
[4] Baylor Coll Med, Ctr Space Med, Houston, TX USA
[5] Houston Methodist Hosp, Blanton Eye Inst, Dept Ophthalmol, Houston, TX USA
[6] Houston Methodist Hosp, Houston Methodist Res Inst, Houston, TX USA
[7] Weill Cornell Med, Dept Ophthalmol, New York, NY USA
[8] Weill Cornell Med, Dept Neurol, New York, NY USA
[9] Weill Cornell Med, Dept Neurosurg, New York, NY USA
[10] Univ Texas Med Branch, Dept Ophthalmol, Galveston, TX USA
[11] Univ Texas MD Anderson Canc Ctr, Houston, TX USA
[12] Texas A&M Sch Med, Bryan, TX USA
[13] Univ Iowa Hosp & Clin, Dept Ophthalmol, Iowa City, IA USA
关键词
Generative AI; Generative Adversarial Networks; Ophthalmology; Machine Learning; Eye Disease; Deep Learning; DIABETIC-RETINOPATHY; GLOBAL PREVALENCE; MACULAR DEGENERATION; HIGH MYOPIA; FUNDUS; CATARACT; PREMATURITY; SEGMENTATION; PROGRESSION; CHALLENGES;
D O I
10.1007/s00417-025-06830-9
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PurposeGenerative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis. This narrative review focusses on the application of GANs in ophthalmology, in order to provide a critical account of the current state and ongoing challenges for healthcare professionals and allied scientists who are interested in this rapidly evolving field.MethodsWe performed a search of studies that apply generative adversarial networks (GANs) in diagnosis, therapy and prognosis of eight eye diseases. These disparate tasks were selected to highlight developments in GAN techniques, differences and common features to aid practitioners and future adopters in the field of ophthalmology.ResultsThe studies we identified show that GANs have demonstrated capacity to: generate realistic and useful synthetic images, convert image modality, improve image quality, enhance extraction of relevant features, and provide prognostic predictions based on input images and other relevant data.ConclusionThe broad range of architectures considered describe how GAN technology is evolving to meet different challenges (including segmentation and multi-modal imaging) that are of particular relevance to ophthalmology. The wide availability of datasets now facilitates the entry of new researchers to the field. However mainstream adoption of GAN technology for clinical use remains contingent on larger public datasets for widespread validation and necessary regulatory oversight.
引用
收藏
页数:18
相关论文
共 108 条
[1]   Artificial intelligence in ophthalmology: A multidisciplinary approach [J].
Ahuja, Abhimanyu S. ;
Wagner, Isabella, V ;
Dorairaj, Syril ;
Checo, Leticia ;
Ten Hulzen, Richard .
INTEGRATIVE MEDICINE RESEARCH, 2022, 11 (04)
[2]   Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement [J].
Alwakid, Ghadah ;
Gouda, Walaa ;
Humayun, Mamoona .
HEALTHCARE, 2023, 11 (06)
[3]   Defining response to anti-VEGF therapies in neovascular AMD [J].
Amoaku, W. M. ;
Chakravarthy, U. ;
Gale, R. ;
Gavin, M. ;
Ghanchi, F. ;
Gibson, J. ;
Harding, S. ;
Johnston, R. L. ;
Kelly, S. ;
Lotery, A. ;
Mahmood, S. ;
Menon, G. ;
Sivaprasad, S. ;
Talks, J. ;
Tufail, A. ;
Yang, Y. .
EYE, 2015, 29 (06) :721-731
[4]  
Asbell PA, 2005, LANCET, V365, P599
[5]   Creating realistic anterior segment optical coherence tomography images using generative adversarial networks [J].
Assaf, Jad F. ;
Abou Mrad, Anthony ;
Reinstein, Dan Z. ;
Amescua, Guillermo ;
Zakka, Cyril ;
Archer, Timothy J. ;
Yammine, Jeffrey ;
Lamah, Elsa ;
Haykal, Michele ;
Awwad, Shady T. .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (10) :1414-1422
[6]   Enhancing the Automated Detection of Implantable Collamer Lens Vault Using Generative Adversarial Networks and Synthetic Data on Optical Coherence Tomography [J].
Assaf, Jad F. ;
Yazbeck, Hady ;
Reinstein, Dan Z. ;
Archer, Timothy J. ;
Arbelaez, Juan ;
Bteich, Yara ;
Arbelaez, Maria Clara ;
Abou Mrad, Anthony ;
Awwad, Shady T. .
JOURNAL OF REFRACTIVE SURGERY, 2024, 40 (04) :e199-e207
[7]   Prediction of Long-Term Treatment Outcomes for Diabetic Macular Edema Using a Generative Adversarial Network [J].
Baek, Jiwon ;
He, Ye ;
Emamverdi, Mehdi ;
Mahmoudi, Alireza ;
Nittala, Muneeswar Gupta ;
Corradetti, Giulia ;
Ip, Michael ;
Sadda, SriniVas R. .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2024, 13 (07)
[8]   Myopia [J].
Baird, Paul N. ;
Saw, Seang-Mei ;
Lanca, Carla ;
Guggenheim, Jeremy A. ;
Smith III, Earl L. ;
Zhou, Xiangtian ;
Matsui, Kyoko-Ohno ;
Wu, Pei-Chang ;
Sankaridurg, Padmaja ;
Chia, Audrey ;
Rosman, Mohamad ;
Lamoureux, Ecosse L. ;
Man, Ryan ;
He, Mingguang .
NATURE REVIEWS DISEASE PRIMERS, 2020, 6 (01)
[9]   AN INTERNATIONAL CLASSIFICATION AND GRADING SYSTEM FOR AGE-RELATED MACULOPATHY AND AGE-RELATED MACULAR DEGENERATION [J].
BIRD, AEC ;
BRESSLER, NM ;
BRESSLER, SB ;
CHISHOLM, IH ;
COSCAS, G ;
DAVIS, MD ;
DEJONG, PTVM ;
KLAVER, CCW ;
KLEIN, BEK ;
KLEIN, R ;
MITCHELL, P ;
SARKS, JP ;
SARKS, SH ;
SOURBANE, G ;
TAYLOR, HR ;
VINGERLING, JR .
SURVEY OF OPHTHALMOLOGY, 1995, 39 (05) :367-374
[10]   Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010 [J].
Blencowe, Hannah ;
Lawn, Joy E. ;
Vazquez, Thomas ;
Fielder, Alistair ;
Gilbert, Clare .
PEDIATRIC RESEARCH, 2013, 74 :35-49