Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method

被引:0
作者
Caldarelli, Edoardo [1 ,5 ]
Chatalic, Antoine [3 ,6 ]
Colome, Adria
Molinari, Cesare [3 ]
Ocampo-Martinez, Carlos [1 ,2 ]
Torras, Carme [1 ]
Rosasco, Lorenzo [3 ,4 ,5 ]
机构
[1] UPC, CSIC, Inst Robot & Informat Ind, Barcelona, Spain
[2] Univ Politecn Cataluna, BarcelonaTECH, Automat Control Dept ESAII, Barcelona, Spain
[3] Univ Genoa, DIBRIS, MaLGa Ctr, Genoa, Italy
[4] MIT, CBMM, Cambridge, MA USA
[5] Ist Italiano Tecnol, Genoa, Italy
[6] Univ Grenoble Alpes, CNRS, GIPSA Lab, Grenoble, France
基金
欧洲研究理事会;
关键词
Koopman operator; Kernel methods; Nystr & ouml; m method; Linear quadratic regulator; Data-driven methods; DYNAMICAL-SYSTEMS; MODEL;
D O I
10.1016/j.automatica.2025.112302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study how the Koopman operator framework can be combined with kernel methods to effectively control nonlinear dynamical systems. While kernel methods have typically large computational requirements, we show how random subspaces (Nystr & ouml;m approximation) can be used to achieve huge computational savings while preserving accuracy. Our main technical contribution is deriving theoretical guarantees on the effect of the Nystr & ouml;m approximation. More precisely, we study the linear quadratic regulator problem, showing that the approximated Riccati operator converges at the rate m-1/2, and the regulator objective, for the associated solution of the optimal control problem, converges at the rate m-1, where m is the random subspace size. Theoretical findings are complemented by numerical experiments corroborating our results. (c) 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:14
相关论文
共 56 条
  • [1] Abraham I, 2017, ROBOTICS: SCIENCE AND SYSTEMS XIII
  • [2] Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
    Abraham, Ian
    Murphey, Todd D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (05) : 1071 - 1083
  • [3] Controlled Gaussian process dynamical models with application to robotic cloth manipulation
    Amadio, Fabio
    Delgado-Guerrero, Juan Antonio
    Colome, Adria
    Torras, Carme
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (6) : 3209 - 3219
  • [4] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [5] Ben-Israel A., 2003, CMS books in mathematics, Generalized inverses: theory and applications, V2nd
  • [6] Bensoussan A., 2007, Representation and control of infinite dimensional systems, V1
  • [7] Berlinet A., 2011, Reproducing kernel Hilbert spaces in probability and statistics
  • [8] Bevanda P., 2024, Advances in Neural Information Processing Systems, V36
  • [9] Koopman operator dynamical models: Learning, analysis and control
    Bevanda, Petar
    Sosnowski, Stefan
    Hirche, Sandra
    [J]. ANNUAL REVIEWS IN CONTROL, 2021, 52 : 197 - 212
  • [10] Modern Koopman Theory for Dynamical Systems
    Brunton, Steven L.
    Budisic, Marko
    Kaiser, Eurika
    Kutz, J. Nathan
    [J]. SIAM REVIEW, 2022, 64 (02) : 229 - 340