Generalized Bernstein Theorem for stable minimal plateau surfaces

被引:0
作者
Gaoming Wang [1 ]
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
[2] Cornell University,Department of Mathematics
关键词
Minimal surfaces; Generalized Bernstein Theorem; Stability;
D O I
10.1007/s10455-025-10002-7
中图分类号
学科分类号
摘要
In this paper, we consider a Generalized Bernstein Theorem for a type of generalized minimal surfaces, namely minimal Plateau surfaces. We show that if a complete orientable minimal Plateau surface is stable and has quadratic area growth in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3 $$\end{document}, then it must be flat.
引用
收藏
相关论文
empty
未找到相关数据