In this paper, we consider a Generalized Bernstein Theorem for a type of generalized minimal surfaces, namely minimal Plateau surfaces. We show that if a complete orientable minimal Plateau surface is stable and has quadratic area growth in R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^3 $$\end{document}, then it must be flat.