Improving wheat grain yield genomic prediction accuracy using historical data

被引:0
|
作者
Vitale, Paolo [1 ]
Montesinos-Lopez, Osval [2 ]
Gerard, Guillermo [1 ]
Velu, Govindan [1 ]
Tadesse, Zerihun [1 ]
Montesinos-Lopez, Abelardo [3 ]
Dreisigacker, Susanne [1 ]
Pacheco, Angela [1 ]
Toledo, Fernando [1 ]
Saint Pierre, Carolina [1 ]
Perez-Rodriguez, Paulino
Gardner, Keith [1 ]
Crespo-Herrera, Leonardo [1 ]
Crossa, Jose [1 ,4 ]
机构
[1] Int Maize & Wheat Improvement Ctr CIMMYT, Km 45 Carretera Mexico Veracruz, El Batan 5623, Edo De Mexico, Mexico
[2] Univ Colima, Fac Telematica, Colima 28040, Mexico
[3] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn CUCEI, Guadalajara 44430, Jalisco, Mexico
[4] Colegio Postgrad, Montecillo 56231, Edo De Mexico, Mexico
来源
G3-GENES GENOMES GENETICS | 2025年 / 15卷 / 04期
基金
比尔及梅琳达.盖茨基金会;
关键词
Genomic Prediction; plant breeding; wheat breeding; historical data; prediction accuracy; X ENVIRONMENT INTERACTION; TRAINING POPULATION DESIGN; SELECTION; RELATEDNESS; PEDIGREE;
D O I
10.1093/g3journal/jkaf038
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genomic selection is an essential tool to improve genetic gain in wheat breeding. This study aimed to enhance prediction accuracy for grain yield across various selection environments using CIMMYT's (International Maize and Wheat Improvement Center) historical dataset. Ten years of grain yield data from 6 selection environments were analyzed, with the populations of 5 years (2018-2023) as the validation population and earlier years (back to 2013-2014) as the training population. Generally, we observed that as the number of training years increased, the prediction accuracy tended to improve or stabilize. For instance, in the late heat stress selection environment (beds late heat stress), prediction accuracy increased from 0.11 (1 training year) to 0.23 (5 years), stabilizing at 0.26. Similar trends were observed in the intermediate drought selection environment (beds with 2 irrigations), with prediction accuracy rising from 0.12 (1 year) to 0.21 (4 years) but minimal improvement beyond that. Conversely, some selection environments, such as flat 5 irrigations (flat optimal environment), did not significantly increase, with the prediction accuracy fluctuating around 0.09-0.14 regardless of the number of training years used. Additionally, average genetic diversity within the training population and the validation population influenced prediction accuracy. Indeed, a negative correlation between prediction accuracy and the genetic distance was observed. This highlights the need to balance genetic diversity to enhance the predictive power of genomic selection models. These findings exhibit the benefits of using an extended historical dataset while considering genetic diversity to maximize prediction accuracy in genomic selection strategies for wheat breeding, ultimately supporting the development of high-yielding varieties.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Accuracy of Genomic Prediction of Yield and Sugar Traits in Saccharum spp. Hybrids
    Islam, Md S.
    McCord, Per
    Read, Quentin D.
    Qin, Lifang
    Lipka, Alexander E.
    Sood, Sushma
    Todd, James
    Olatoye, Marcus
    AGRICULTURE-BASEL, 2022, 12 (09):
  • [32] Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    de los Campos, Gustavo
    Alvarado, Gregorio
    Suchismita, Mondal
    Rutkoski, Jessica
    Gonzalez-Perez, Lorena
    Burgueno, Juan
    PLANT METHODS, 2017, 13
  • [33] Increased Genomic Prediction Accuracy in Wheat Breeding Through Spatial Adjustment of Field Trial Data
    Lado, Bettina
    Matus, Ivan
    Rodriguez, Alejandra
    Inostroza, Luis
    Poland, Jesse
    Belzile, Francois
    del Pozo, Alejandro
    Quincke, Martin
    Castro, Marina
    von Zitzewitz, Jarislav
    G3-GENES GENOMES GENETICS, 2013, 3 (12): : 2105 - 2114
  • [34] Genomic prediction for grain zinc and iron concentrations in spring wheat
    Govindan Velu
    Jose Crossa
    Ravi P. Singh
    Yuanfeng Hao
    Susanne Dreisigacker
    Paulino Perez-Rodriguez
    Arun K. Joshi
    Ravish Chatrath
    Vikas Gupta
    Arun Balasubramaniam
    Chhavi Tiwari
    Vinod K. Mishra
    Virinder Singh Sohu
    Gurvinder Singh Mavi
    Theoretical and Applied Genetics, 2016, 129 : 1595 - 1605
  • [35] Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
    Osval A. Montesinos-López
    Abelardo Montesinos-López
    José Crossa
    Gustavo de los Campos
    Gregorio Alvarado
    Mondal Suchismita
    Jessica Rutkoski
    Lorena González-Pérez
    Juan Burgueño
    Plant Methods, 13
  • [36] The effects of training population design on genomic prediction accuracy in wheat
    Edwards, Stefan McKinnon
    Buntjer, Jaap B.
    Jackson, Robert
    Bentley, Alison R.
    Lage, Jacob
    Byrne, Ed
    Burt, Chris
    Jack, Peter
    Berry, Simon
    Flatman, Edward
    Poupard, Bruno
    Smith, Stephen
    Hayes, Charlotte
    Gaynor, R. Chris
    Gorjanc, Gregor
    Howell, Phil
    Ober, Eric
    Mackay, Ian J.
    Hickey, John M.
    THEORETICAL AND APPLIED GENETICS, 2019, 132 (07) : 1943 - 1952
  • [37] Genomic prediction of grain yield in commercial Finnish oat (Avena sativa) and barley (Hordeum vulgare) breeding programmes
    Haikka, Hanna
    Knurr, Timo
    Manninen, Outi
    Pietila, Leena
    Isolahti, Mika
    Teperi, Esa
    Mantysaari, Esa A.
    Stranden, Ismo
    PLANT BREEDING, 2020, 139 (03) : 550 - 561
  • [38] Phenomic and genomic prediction of yield on multiple locations in winter wheat
    Jackson, Robert
    Buntjer, Jaap B.
    Bentley, Alison R.
    Lage, Jacob
    Byrne, Ed
    Burt, Chris
    Jack, Peter
    Berry, Simon
    Flatman, Edward
    Poupard, Bruno
    Smith, Stephen
    Hayes, Charlotte
    Barber, Tobias
    Love, Bethany
    Gaynor, R. Chris
    Gorjanc, Gregor
    Howell, Phil
    Mackay, Ian J.
    Hickey, John M.
    Ober, Eric S.
    FRONTIERS IN GENETICS, 2023, 14
  • [39] Enhancing prediction accuracy of grain yield in wheat lines adapted to the southeastern United States through multivariate and multi-environment genomic prediction models incorporating spectral and thermal information
    McBreen, Jordan
    Babar, Md. Ali
    Jarquin, Diego
    Khan, Naeem
    Harrison, Steve
    De Witt, Noah
    Mergoum, Mohamed
    Lopez, Ben
    Boyles, Richard
    Lyerly, Jeanette
    Murphy, J. Paul
    Shakiba, Ehsan
    Sutton, Russel
    Ibrahim, Amir
    Howell, Kimberly
    Smith, Jared H.
    Brown-Guedira, Gina
    Tiwari, Vijay
    Santantonio, Nicholas
    Van Sanford, David A.
    PLANT GENOME, 2025, 18 (01)
  • [40] Improving Prediction Accuracy Using Multi-allelic Haplotype Prediction and Training Population Optimization in Wheat
    Sallam, Ahmad H.
    Conley, Emily
    Prakapenka, Dzianis
    Da, Yang
    Anderson, James A.
    G3-GENES GENOMES GENETICS, 2020, 10 (07): : 2265 - 2273