RSTD-YOLOv7: a steel surface defect detection based on improved YOLOv7

被引:0
作者
Hongru Song [1 ]
机构
[1] Zhejiang University of Technology,College of Information Engineering
[2] Tongling University,College of Electrical Engineering
关键词
Surface defect detection; Feature extraction; YOLOv7; Swin transformer;
D O I
10.1038/s41598-025-04811-w
中图分类号
学科分类号
摘要
Steel surface defect detection is one of the important applications of object detection technology in industry, which can accurately detect surface defects and improve the quality of products. To address the issues of low detection accuracy caused by less area, small scale and similarity between defects and background of steel surface defects. We proposes a RSTD-YOLOv7 method based on YOLOv7 for steel surface defect detection. First, the RFBVGG module and SimAM attention mechanism are integrated into the YOLOv7 backbone network to expand the receptive field, reduce the loss of texture information, and enhance the target feature extraction ability of the model. Second, the STRVGG module, constructed using the Swin Transformer, is incorporated into the neck network. This enhancement improves the extraction ability to capture deep information concealed within the feature maps, reduces feature loss, and improve the ability of feature detection. Then, an improved DSDH detector head is employed to elevate the model’s detection precision and network convergence speed. Finally, comparative experiments are conducted on the NEU-DET and GC10-DET datasets. The results show that our proposed method attains the highest detection accuracy, achieving an mAP of 79.3% and 73.2% respectively, compared with the original YOLOv7 model, the mAP increased by 15.9% and 9.6% respectively, the parameters were reduced by 11.3 M and 11.5 M, respectively, the FPS increased by 15.7% and 11.5%, respectively. These results show that our proposed model excels in detection accuracy and speed, exhibiting remarkable generalization capabilities.
引用
收藏
相关论文
共 50 条
  • [1] STRIP SURFACE DEFECT DETECTION BASED ON IMPROVED YOLOV7
    Wu, Huixin
    Chen, Kaiyuan
    Ni, Mengqi
    Ma, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1493 - 1507
  • [2] An Enhanced Detection Method of PCB Defect Based on Improved YOLOv7
    Yang, Yujie
    Kang, Haiyan
    ELECTRONICS, 2023, 12 (09)
  • [3] Research on Low Contrast Surface Defect Detection Method Based on Improved YOLOv7
    Chen, Shuang
    Li, Weipeng
    Yan, Xiang
    Liu, Wen
    Chen, Chao
    Liao, Jinwei
    Chen, Xu
    Shu, Jianqi
    IEEE ACCESS, 2024, 12 : 179997 - 180008
  • [4] CCG-YOLOv7: A Wood Defect Detection Model for Small Targets Using Improved YOLOv7
    Cui, Wenqi
    Li, Zhenye
    Duanmu, Anning
    Xue, Sheng
    Guo, Yiren
    Ni, Chao
    Zhu, Tingting
    Zhang, Yajun
    IEEE ACCESS, 2024, 12 : 10575 - 10585
  • [5] MoL-YOLOv7: Streamlining Industrial Defect Detection With an Optimized YOLOv7 Approach
    Raj, G. Deepti
    Prabadevi, B.
    IEEE ACCESS, 2024, 12 : 117090 - 117101
  • [6] Automatic Acne Detection Model Based on Improved YOLOv7
    Zhang, Delong
    Jin, Chunyang
    Zhang, Zhidong
    Cao, Xiyuan
    Xue, Chenyang
    IEEE ACCESS, 2024, 12 : 194390 - 194398
  • [7] Dense Small Object Detection Based on an Improved YOLOv7 Model
    Chen, Xun
    Deng, Linyi
    Hu, Chao
    Xie, Tianyi
    Wang, Chengqi
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [8] AWUCD-Net: The Armored Wire Umbilical Cable Surface Defect Detection Algorithm Based on Improved YOLOv7
    Chen, Du
    Jin, Yongping
    IEEE ACCESS, 2024, 12 : 167559 - 167574
  • [9] CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention Mechanism for Driver Distraction Behavior Detection
    Liu, Shugang
    Wang, Yujie
    Yu, Qiangguo
    Liu, Hongli
    Peng, Zhan
    IEEE ACCESS, 2022, 10 : 129116 - 129124
  • [10] An Improved YOLOv7-Tiny-Based Algorithm for Wafer Surface Defect Detection
    Li, Mengyun
    Wang, Xueying
    Zhang, Hongtao
    Hu, Xiaofeng
    IEEE ACCESS, 2025, 13 : 10724 - 10734