Fabrication of flexible polymer-MOF composite electrolyte for solid-state lithium metal batteries with high rate performance

被引:2
作者
Gao, Jiansheng [1 ]
Chai, Yan [1 ]
Ni, Jialun [1 ]
Zeng, Yong [2 ]
Zhang, Gaoyuan [1 ]
Liu, Xueling [1 ]
Ning, De [3 ]
Jin, Xinghui [4 ]
Zhao, Huajun [4 ]
Zhou, Dong [5 ]
Gao, Rui [1 ]
Wu, Wei [3 ]
Wang, Jun [6 ]
Li, Yongli [1 ]
机构
[1] North China Elect Power Univ, Inst Clean Energy Technol, Beijing 102206, Peoples R China
[2] South China Univ Technol, Res Inst Mat Sci, Key Lab Polymer Proc Engn, Guangzhou 510640, Peoples R China
[3] Chinese Acad Sci, Ctr Photon Informat & Energy Mat, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[4] Yancheng Inst Technol, Sch Mat Sci & Engn, Yancheng 224051, Peoples R China
[5] Sun Yat Sen Univ, Sch Adv Energy, Shenzhen Campus, Shenzhen 518107, Peoples R China
[6] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Shenzhen 518055, Peoples R China
关键词
Solid-state lithium metal batteries; Polyacrylonitrile; Metal organic framework; Coaxial electrospinning; Lithium deposition; DENDRITE-FREE; NETWORK;
D O I
10.1016/j.cej.2025.162738
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The transition from conventional lithium ion batteries to high-performance solid-state lithium metal batteries faces key challenges, including the establishment of an efficient and stable ion transport network within solidstate electrolyte and the achievement of uniform lithium deposition during cycling. Herein, a flexible polymer-metal organic framework (MOF) composite solid-state electrolyte with a three-dimensional network was fabricated through coaxial electrospinning. Specifically, MOFs are uniformly dispersed on polyacrylonitrile (PAN) nanofibers, resulting in a high room-temperature ionic conductivity (1.29 x 10-3 S cm-1) and lithium ion transference number (0.79) after in situ thermal polymerization. The ZIF-8 coated PAN nanofiber enhances the reduction-tolerance of PAN nanofiber membrane against lithium metal and the increased MOF loading improves the Young's modulus of the composite electrolyte (1.31 GPa), thus preventing the formation and penetration lithium dendrites. Consequently, the mechanically robust composite electrolyte exhibits superior rate capability in Li||Li symmetric cell and Li||LiNi0.83Co0.11Mn0.06O2 cell, along with extended cycle life in Li||LiFePO4 cell.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Metal-Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment [J].
Ahmadijokani, Farhad ;
Molavi, Hossein ;
Bahi, Addie ;
Fernandez, Roberto ;
Alaee, Parvin ;
Wu, Siying ;
Wuttke, Stefan ;
Ko, Frank ;
Arjmand, Mohammad .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
[3]   A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons [J].
Bergaoui, Manel ;
Khalfaoui, Mohamed ;
Awadallah-F, Ahmed ;
Al-Muhtaseb, Shaheen .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 96
[4]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[5]   Construction of flexible asymmetric composite polymer electrolytes for high-voltage lithium metal batteries with superior performance [J].
Chai, Yan ;
Ning, De ;
Zhou, Dong ;
Gao, Jiansheng ;
Ni, Jialun ;
Zhang, Gaoyuan ;
Gao, Rui ;
Wu, Wei ;
Wang, Jun ;
Li, Yongli .
NANO ENERGY, 2024, 130
[6]   Stabilizing lithium plating in polymer electrolytes by concentration-polarization- induced transformation [J].
Cheng, Qian ;
Jin, Tianwei ;
Miao, Yupeng ;
Liu, Zhe ;
Borovilas, James ;
Zhang, Hanrui ;
Liu, Shuwei ;
Kim, So-Yeon ;
Zhang, Ruiwen ;
Wang, Haozhen ;
Chen, Xi ;
Chen, Long-Qing ;
Li, Ju ;
Min, Wei ;
Yang, Yuan .
JOULE, 2022, 6 (10) :2372-2389
[7]   Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: From single scale to multiscale structure detection [J].
Cheng, Weidong ;
Zhao, Mengyuan ;
Lai, Yuecheng ;
Wang, Xin ;
Liu, Huanyan ;
Xiao, Peng ;
Mo, Guang ;
Liu, Bin ;
Liu, Yunpeng .
EXPLORATION, 2024, 4 (01)
[8]   Molecular-scale interaction between sub-1 nm cluster chains and polymer for high-performance solid electrolyte [J].
Dong, Guangyao ;
Cheng, Yu ;
Zhang, Hong ;
Hu, Xinkuan ;
Xu, Haoran ;
Abdelmaoula, Ahmed Eissa ;
Xu, Lin .
ENERGY STORAGE MATERIALS, 2024, 69
[9]   Emergent solvation phenomena in non-aqueous electrolytes with multiple anions [J].
Driscoll, Darren M. ;
Lavan, Sydney N. ;
Zorko, Milena ;
Redfern, Paul C. ;
Ilic, Stefan ;
Agarwal, Garvit ;
Fister, Timothy T. ;
Assary, Rajeev S. ;
Cheng, Lei ;
Strmcnik, Dusan ;
Balasubramanian, Mahalingam ;
Connell, Justin G. .
CHEM, 2023, 9 (07) :1955-1971
[10]   Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries [J].
Duan, Song ;
Qian, Lanting ;
Zheng, Yun ;
Zhu, Yanfei ;
Liu, Xiang ;
Dong, Li ;
Yan, Wei ;
Zhang, Jiujun .
ADVANCED MATERIALS, 2024, 36 (32)