On the Differential Inequality u′′+ku′≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u''+ku'\ge 0$$\end{document} and Applications to Eigenvalue ProblemsOn the Differential Inequality u′′+ku′≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u''+ku'\ge 0$$\end{document}...M. Jleli, B. Samet

被引:0
|
作者
Mohamed Jleli [1 ]
Bessem Samet [1 ]
机构
[1] College of Science,Department of Mathematics
[2] King Saud University,undefined
关键词
-convex functions; Hermite-Hadamard-type inequalities; Weighted integral inequalities; Eigenvalue problems; Lyapunov-type inequalities; 26A51; 26D10; 34A40; 34B09; 34L15;
D O I
10.1007/s12346-025-01307-w
中图分类号
学科分类号
摘要
In this work, we introduce and study the class of k-convex functions, that is, the class of functions u∈C2(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in C^2(I)$$\end{document} satisfying the second-order differential inequality u′′(t)+ku′(t)≥0,t∈I,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u''(t)+ku'(t)\ge 0,\quad t\in I, $$\end{document}where I is an interval of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} and k≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ne 0$$\end{document} is a constant. Among many other results, a Fejér-type inequality for k-convex functions is established. Making use of the obtained inequality, a general Lyapunov-type inequality is obtained for the eigenvalue problem -u′′(t)+ku′(t)=λw(t)u(t),a<t<b,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\left( u''(t)+ku'(t)\right) =\lambda w(t)u(t),\quad a<t<b, $$\end{document}where k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>0$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, and w∈C([a,b])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in C([a,b])$$\end{document} is a positive function. Next, different boundary conditions are investigated. To the best of our knowledge, this work is the first one showing a connection between Fejér-type inequalities and Lyapunov-type inequalities.
引用
收藏
相关论文
共 28 条