Balancing CO2 Adsorption and H2 Activation on Confined ZnOx Species for CO2 Hydrogenation

被引:0
作者
Jia, Haoran [1 ,2 ]
Feng, Xiaohui [1 ,3 ]
Du, Xiangze [1 ]
Lin, Le [1 ]
Mu, Rentao [1 ]
Fu, Qiang [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230022, Peoples R China
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助; 国家重点研发计划;
关键词
CO2; hydrogenation; Dual-site catalysis; Hydrogen spillover; IR spectroscopy; Zinc; GAS-SHIFT REACTION; METHANOL SYNTHESIS; SELECTIVE CONVERSION; CARBON-MONOXIDE; LIGHT OLEFINS; SYNGAS; TEMPERATURE; CATALYST; CHEMISORPTION; SITES;
D O I
10.1002/anie.202503319
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many oxide catalysts exhibit high selectivity but low conversion in CO2 hydrogenation due to strong CO2 adsorption, which often impedes H-2 dissociation and subsequent hydrogenation. Herein, we report that a ZnCr2O4@ZnOx catalyst featuring monodispersed ZnOx overlayer confined on ZnCr2O4 facilitates CO2 activation without compromising H-2 activation. This catalyst demonstrates a dual-site mechanism in which ZnCr2O4 surface and/or ZnOx/ZnCr2O4 interface provide sites for CO2 activation and monodispersed ZnOx promote homolytic H-2 dissociation and formation of stable metal & horbar;H species, enabling formate formation through hydrogen spillover to CO2 adsorption sites for hydrogenation at 303 K. In contrast, H-2 activation on ZnO or ZnCr2O4 suffers from the poisoning effect of strong CO2 adsorption. Consequently, the ZnCr2O4@ZnOx catalyst shows 2-8 folds enhancement in CO2 hydrogenation between 623-773 K than ZnO and maintains 33% conversion and 100% CO selectivity at 723 K over 150 h. The established structure-performance relationship illustrates the critical role of dual-site catalysis and hydrogen spillover in hydrogenation reaction.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Highly Selective Conversion of CO2 or CO into Precursors for Kerosene-Based Aviation Fuel via an Aldol-Aromatic Mechanism [J].
Arslan, Muhammad Tahir ;
Tian, Guo ;
Ali, Babar ;
Zhang, Chenxi ;
Xiong, Hao ;
Li, Zhengwen ;
Luo, Liqiang ;
Chen, Xiao ;
Wei, Fei .
ACS CATALYSIS, 2022, 12 (03) :2023-2033
[2]   A DRIFTS STUDY OF THE MORPHOLOGY AND SURFACE ADSORBATE COMPOSITION OF AN OPERATING METHANOL SYNTHESIS CATALYST [J].
BAILEY, S ;
FROMENT, GF ;
SNOECK, JW ;
WAUGH, KC .
CATALYSIS LETTERS, 1995, 30 (1-4) :99-111
[3]   Tuning Interfacial Sites of WOx/Pt for Enhancing Reverse Water Gas Shift Reaction [J].
Bi, Wenli ;
Wang, Jia ;
Zhang, Ruoyu ;
Ge, Qingfeng ;
Zhu, Xinli .
ACS CATALYSIS, 2024, 14 (15) :11205-11217
[4]   INFRARED STUDY OF ZNO SURFACE PROPERTIES .1. HYDROGEN AND DEUTERIUM CHEMISORPTION AT ROOM-TEMPERATURE [J].
BOCCUZZI, F ;
BORELLO, E ;
ZECCHINA, A ;
BOSSI, A ;
CAMIA, M .
JOURNAL OF CATALYSIS, 1978, 51 (02) :150-159
[5]   FTIR study of carbon monoxide oxidation and scrambling at room temperature over copper supported on ZnO and TiO2 .1. [J].
Boccuzzi, F ;
Chiorino, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (09) :3617-3624
[7]   Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction [J].
Chen, CS ;
Cheng, WH ;
Lin, SS .
APPLIED CATALYSIS A-GENERAL, 2004, 257 (01) :97-106
[8]   Unraveling Highly Tunable Selectivity in CO2 Hydrogenation over Bimetallic In-Zr Oxide Catalysts [J].
Chen, Tian-yuan ;
Cao, Chenxi ;
Chen, Tian-bao ;
Ding, Xiaoxu ;
Huang, Hai ;
Shen, Liang ;
Cao, Xinyu ;
Zhu, Minghui ;
Xu, Jing ;
Gao, Jian ;
Han, Yi-Fan .
ACS CATALYSIS, 2019, 9 (09) :8785-8797
[9]   Visualization of the Active Sites of Zinc-Chromium Oxides and the CO/H2 Activation Mechanism in Direct Syngas Conversion [J].
Chen, Yuxiang ;
Han, Shaobo ;
Pan, Xiulian ;
Jiao, Feng ;
Liu, Wei ;
Pan, Yang ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (03) :1887-1893
[10]   C-C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSM-5 Zeolite [J].
Chen, Yuxiang ;
Gong, Ke ;
Jiao, Feng ;
Pan, Xiulian ;
Hou, Guangjin ;
Si, Rui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (16) :6529-6534