Scaling limit of the cluster size distribution for the random current measure on the complete graph

被引:1
作者
Krachun, Dmitrii [1 ]
Panagiotis, Christoforos [2 ]
Panis, Romain [3 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Bath Univ, Bath, England
[3] Inst Camille Jordan, Villeurbanne, France
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2024年 / 29卷
基金
瑞士国家科学基金会;
关键词
Ising model; phi; 4; model; complete graph; random currents; percolation; cluster; PHASE-TRANSITION; FIELD-THEORY; ISING-MODEL; PERCOLATION;
D O I
10.1214/24-EJP1223
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the percolation configuration arising from the random current representation of the near-critical Ising model on the complete graph. We compute the scaling limit of the cluster size distribution for an arbitrary set of sources in the single and the double current measures. As a byproduct, we compute the tangling probabilities recently introduced by Gunaratnam, Panagiotis, Panis, and Severo in [GPPS22]. This provides a new perspective on the switching lemma for the phi 4 model introduced in the same paper: in the Gaussian limit we recover Wick's law, while in the Ising limit we recover the corresponding tool for the Ising model.
引用
收藏
页数:24
相关论文
共 23 条