Toward diffusion MRI in the diagnosis and treatment of pancreatic cancer

被引:0
作者
Lee, Junhao [1 ]
Lin, Tingting [2 ]
He, Yifei [3 ]
Wu, Ye [3 ]
Qin, Jiaolong [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Fujian Med Univ, Affiliated Sanming Hosp 1, Dept Med & Radiat Oncol, Sanming, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Diffusion MRI; Pancreatic cancer; Diagnosis; Treatment response; Artificial intelligence; INTRAVOXEL INCOHERENT MOTION; FORMING FOCAL PANCREATITIS; KURTOSIS IMAGING DKI; WEIGHTED MRI; HISTOGRAM ANALYSIS; MICROVASCULAR INVASION; QUANTITATIVE-ANALYSIS; RADIATION-THERAPY; COEFFICIENT; ADC;
D O I
10.1007/s12032-025-02759-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Pancreatic cancer is a highly aggressive malignancy with rising incidence and mortality rates, often diagnosed at advanced stages. Conventional imaging methods, such as computed tomography (CT) and magnetic resonance imaging (MRI), struggle to assess tumor characteristics and vascular involvement, which are crucial for treatment planning. This paper explores the potential of diffusion magnetic resonance imaging (dMRI) in enhancing pancreatic cancer diagnosis and treatment. Diffusion-based techniques, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI), combined with emerging AI-powered analysis, provide insights into tissue microstructure, allowing for earlier detection and improved evaluation of tumor cellularity. These methods may help assess prognosis and monitor therapy response by tracking diffusion and perfusion metrics. However, challenges remain, such as standardized protocols and robust data analysis pipelines. Ongoing research, including deep learning applications, aims to improve reliability, and dMRI shows promise in providing functional insights and improving patient outcomes. Further clinical validation is necessary to maximize its benefits.
引用
收藏
页数:18
相关论文
共 96 条
[1]   MRI vs. CT for the Detection of Liver Metastases in Patients With Pancreatic Carcinoma: A Comparative Diagnostic Test Accuracy Systematic Review and Meta-Analysis [J].
Alabousi, Mostafa ;
McInnes, Matthew D. F. ;
Salameh, Jean-Paul ;
Satkunasingham, Janakan ;
Kagoma, Yoan K. ;
Ruo, Leyo ;
Meyers, Brandon M. ;
Aziz, Tariq ;
van der Pol, Christian B. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (01) :38-48
[2]   Prediction Variability to Identify Reduced AI Performance in Cancer Diagnosis at MRI and CT [J].
Alves, Natalia ;
Bosma, Joeran S. ;
Venkadesh, Kiran V. ;
Jacobs, Colin ;
Saghir, Zaigham ;
de Rooij, Maarten ;
Hermans, John ;
Huisman, Henkjan .
RADIOLOGY, 2023, 308 (03)
[3]  
Andreychenko A, 2014, MED PHYS, V41, DOI 10.1118/1.4888058
[4]   Comparison of Intravoxel Incoherent Motion Parameters across MR Imagers and Field Strengths: Evaluation in Upper Abdominal Organs [J].
Barbieri, Sebastiano ;
Donati, Olivio F. ;
Froehlich, Johannes M. ;
Thoeny, Harriet C. .
RADIOLOGY, 2016, 279 (03) :784-794
[5]  
Barral M, 2013, Diagn Interv Imaging, V94, P619, DOI 10.1016/j.diii.2013.02.011
[6]   Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade [J].
Cao, Likun ;
Chen, Jie ;
Duan, Ting ;
Wang, Min ;
Jiang, Hanyu ;
Wei, Yi ;
Xia, Chunchao ;
Zhou, Xiaoyue ;
Yan, Xu ;
Song, Bin .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2019, 9 (04) :590-602
[7]   Magnetic resonance imaging (MRI) compared with computed tomography (CT) for interobserver agreement of gross tumor volume delineation in pancreatic cancer: a multi-institutional contouring study on behalf of the AIRO group for gastrointestinal cancers [J].
Caravatta, Luciana ;
Cellini, Francesco ;
Simoni, Nicola ;
Rosa, Consuelo ;
Niespolo, Rita Marina ;
Lupattelli, Marco ;
Picardi, Vincenzo ;
Macchia, Gabriella ;
Sainato, Aldo ;
Mantello, Giovanna ;
Dionisi, Francesco ;
Rosetto, Maria Elena ;
Fusco, Vincenzo ;
Navarria, Federico ;
De Paoli, Antonino ;
Guido, Alessandra ;
Vecchi, Claudio ;
Basilico, Raffaella ;
Cianci, Roberta ;
Delli Pizzi, Andrea ;
Di Nicola, Marta ;
Mattiucci, Gian Carlo ;
Valentini, Vincenzo ;
Morganti, Alessio Giuseppe ;
Genovesi, Domenico .
ACTA ONCOLOGICA, 2019, 58 (04) :439-447
[8]   PET/MRI in pancreatic and periampullary cancer: correlating diffusion-weighted imaging, MR spectroscopy and glucose metabolic activity with clinical stage and prognosis [J].
Chen, Bang-Bin ;
Tien, Yu-Wen ;
Chang, Ming-Chu ;
Cheng, Mei-Fang ;
Chang, Yu-Ting ;
Wu, Chih-Horng ;
Chen, Xin-Jia ;
Kuo, Ting-Chun ;
Yang, Shih-Hung ;
Shih, I-Lun ;
Lai, Hong-Shiee ;
Shih, Tiffany Ting-Fang .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (10) :1753-1764
[9]  
Chenevert TL., 2004, CP Magn Reson Imag, DOI [10.1002/0471142719.mib0801s12, DOI 10.1002/0471142719.MIB0801S12]
[10]   A Pilot Study of Diffusion-Weighted MRI in Patients Undergoing Neoadjuvant Chemoradiation for Pancreatic Cancer [J].
Cuneo, Kyle C. ;
Chenevert, Thomas L. ;
Ben-Josef, Edgar ;
Feng, Mary U. ;
Greenson, Joel K. ;
Hussain, Hero K. ;
Simeone, Diane M. ;
Schipper, Matthew J. ;
Anderson, Michelle A. ;
Zalupski, Mark M. ;
Al-Hawary, Mahmoud ;
Galban, Craig J. ;
Rehemtulla, Alnawaz ;
Feng, Felix Y. ;
Lawrence, Theodore S. ;
Ross, Brian D. .
Translational Oncology, 2014, 7 (05) :644-649