Flavin-Containing Monooxygenases Mediate Resistance to Nereistoxin Insecticides in Lepidopteran Pests: Insights into Conserved Tertiary Amine Oxidation Mechanisms

被引:0
作者
Rao, Cong [1 ]
Yuan, Chao [1 ]
He, Wangjin [1 ]
Guo, Hailiang [1 ]
Liu, Kuitun [1 ]
Fan, Jianfeng [1 ]
Su, Jianya [1 ]
机构
[1] Nanjing Agr Univ, Coll Plant Protect, State Key Lab Agr & Forestry Biosecur, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
flavin-containing monooxygenase; nereistoxin; cartap; monosultap; insecticide metabolism; insecticide resistance; CHILO-SUPPRESSALIS LEPIDOPTERA; DEPENDENT MONOOXYGENASE; EVOLUTIONARY RECRUITMENT; METAFLUMIZONE RESISTANCE; PYRROLIZIDINE ALKALOIDS; BEET ARMYWORM; STEM BORER; POPULATIONS; METABOLISM; PLANT;
D O I
10.1021/acs.jafc.5c01818
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study elucidates the molecular mechanism by which flavin-containing monooxygenase (FMO) mediates metabolic resistance to nereistoxin insecticides in lepidopteran pests. A field population of Spodoptera exigua exhibited 50-fold resistance with upregulated SeFMO expression. Using FMO-specific inhibitors, recombinant protein expression, and mass spectrometry, we confirmed that FMO catalyzes N-oxidation of nereistoxin insecticide at the tertiary amine nitrogen. Molecular docking revealed that insect FMO's catalytic mechanism resembles that of human FMO. Transgenic Drosophila models demonstrated that the FMO-mediated N-oxidation enhances insecticide resistance, indicating evolutionary conservation. This highlights FMO's role in insecticide detoxification and its conserved function across species, providing new insights into pest resistance mechanisms.
引用
收藏
页码:7704 / 7715
页数:12
相关论文
共 66 条
[1]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[2]  
ASAHI Y, 1977, CHEM PHARM BULL, V25, P2211
[3]   Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties [J].
Bailleul, Gautier ;
Nicoll, Callum R. ;
Mascotti, Maria Laura ;
Mattevi, Andrea ;
Fraaije, Marco W. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 296
[4]  
Buronfosse T, 1995, J Biochem Toxicol, V10, P179, DOI 10.1002/jbt.2570100402
[5]  
Cashman JR, 2008, EXPERT OPIN DRUG MET, V4, P1507, DOI [10.1517/17425250802522188, 10.1517/17425250802522188 ]
[6]   Human flavin-containing monooxygenases [J].
Cashman, JR ;
Zhang, J .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2006, 46 :65-100
[7]  
Chen Zhi-Hao, 1993, Acta Entomologica Sinica, V36, P409
[8]  
Cheng L., 2003, PLUTELLA XYLOSTERLLA, V30, P335
[9]  
Cheng L.-g., 1998, J NANJING AGR U, V21, P39
[10]  
Cheng Luo-gen, 2008, Agricultural Sciences in China, V7, P847, DOI 10.1016/S1671-2927(08)60122-4