Statistical Estimation of Mean-Field Equilibria in a Class of Discounted Mean-Field Games

被引:0
作者
E. Everardo Martinez-Garcia [1 ]
Fernando Luque-Vásquez [1 ]
J. Adolfo Minjárez-Sosa [1 ]
机构
[1] Universidad de Sonora,Departamento de Matemáticas
关键词
Mean field games; Mean field equilibria; Statistical estimation; Discounted criterion; 91A15; 93E20; 62G05;
D O I
10.1007/s00245-025-10273-3
中图分类号
学科分类号
摘要
This work deals with a class of discrete-time mean-field games evolving according to a stochastic difference equation where the random disturbance distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is unknown or difficult to handle. The mean-field game is defined on Borel spaces and it is assumed possibly unbounded costs. Then, by combining suitable statistical estimation process of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} with the mean-field games theory, we introduce approximation procedures for the mean-field equilibrium under a discounted optimality criterion.
引用
收藏
相关论文
empty
未找到相关数据