This work deals with a class of discrete-time mean-field games evolving according to a stochastic difference equation where the random disturbance distribution \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta $$\end{document} is unknown or difficult to handle. The mean-field game is defined on Borel spaces and it is assumed possibly unbounded costs. Then, by combining suitable statistical estimation process of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta $$\end{document} with the mean-field games theory, we introduce approximation procedures for the mean-field equilibrium under a discounted optimality criterion.